National Testing Agency

Question Paper Name: Topology 10th November 2019 Shift 2

Subject Name: Topology

Creation Date: 2019-11-10 18:07:03

Duration:180Total Marks:100Display Marks:Yes

Topology

Group Number:

Group Id: 709597333

Group Maximum Duration:

Group Minimum Duration:

Revisit allowed for view?:

No
Revisit allowed for edit?:

No
Break time:

Group Marks:

100

Topology -1

Section Id: 709597432

Section Number:

Section type: Online

Mandatory or Optional: Mandatory

Number of Questions:20Number of Questions to be attempted:20Section Marks:20Display Number Panel:Yes

Display Number Panel:Group All Questions:
No

Sub-Section Number: 1

Sub-Section Id: 709597536

Question Shuffling Allowed: No

Question Number: 1 Question Id: 70959730202 Question Type: MCQ Option Shuffling: No Display Question Number: Yes

Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If τ_1 and τ_2 are two topologies on a non-empty set then

- (A) $\tau_1 \cap \tau_2$ is a topology
- (B) $\tau_1 \cup \tau_2$ is a topology
- (C) τ₁ \ τ₂ is a topology
- (D) τ₂ \ τ₁ is a topology.

Question Number: 2 Question Id: 70959730203 Question Type: MCQ Option Shuffling: No Display Question Number: Yes

Single Line Question Option : No Option Orientation : Vertical

A uniform continuous function

- (A) maps Cauchy sequences to Cauchy sequences
- (B) is bijective
- (C) may not map convergent sequences to convergent sequences
- (D) need not be continuous.

Question Number : 3 Question Id : 70959730204 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Let A, B be connected subsets of (\mathbb{R}, d) where d is the usual distance in \mathbb{R} . If $A \cap B \neq \emptyset$, then which the following set may not be connected.

- (A) $A \cup B$
- (B) $A \cap B$
- (C) A \ B
- (D) $A \times B$ in \mathbb{R}^2 (Euclidean distance)

Question Number: 4 Question Id: 70959730205 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let (X, d) be a metric space. Then

- (A) Intersection of arbitrary collection of open sets in X is open in X
- (B) Union of arbitrary collection of closed sets in X is closed in X
- (C) At least one of the above is true.
- (D) Each of the above is false

Question Number : 5 Question Id : 70959730206 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

Let $A = (0, 1) \subseteq \mathbb{R}$. Then

- (A) Each point of A is a limit point of A
- (B) 0 and 1 are limit points of A
- (C) The set of limit points of A is [0, 1].
- (D) Nothing can be said about the limit points of A, because the underlying metric is not specified.

Question Number: 6 Question Id: 70959730207 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following metric space is complete?

- (A) (0,1) with usual metric
- (B) Q with usual metric
- (C) [0, 1] with usual metric
- (D) [0, 1]\0 with usual metric

Question Number: 7 Question Id: 70959730208 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Let A and B be any two subsets of a metric space (X, d). Then

- (A) $A^{\circ} \cup B^{\circ} = (A \cup B)^{\circ}$
- (B) $A^{\circ} \cup B^{\circ} \supseteq (A \cup B)^{\circ}$
- (C) A° ∪ B° ⊆ (A ∪ B)°
- (D) None of these

Question Number: 8 Question Id: 70959730209 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let (X,d) be a connected metric space. If $f:X\longrightarrow \mathbb{R}$ (d usual) is a non-constant continuous function .Then, f(X) is

- (A) finite set
- (B) countable set
- (C) singleton set
- (D) singleton set

Question Number: 9 Question Id: 70959730210 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let X be the set of all real sequences $x = (x_n)$. Consider the metric d defined by

$$d(x,y) = 0 if x = y$$

$$= \frac{1}{\min \{i : x_i \neq y_i\}} if x \neq y$$

where $x = (x_n), y = (y_n) \in X$. Then for distinct sequences $x, y, z \in X$

- (A) $d(x, z) \le d(x, y) + d(y, z)$ and the equality may hold.
- (B) $d(x, z) \le \max \{d(x, y), d(y, z)\}$
- (C) $d(x, z) \ge \max\{d(x, y), d(y, z)\}$
- (D) None of the above.

Question Number: 10 Question Id: 70959730211 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the spaces X and Y are homeomorphic?

- (A) $X = \mathbb{R}, Y = [0, 1).$
- (B) $X = \mathbb{R}, Y = [0, 1].$
- (C) $X = \mathbb{R}, Y = (0, 1).$
- (D) None of the above.

Question Number: 11 Question Id: 70959730212 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following metric spaces are not complete?

- (A) R with usual metric
- (B) ℝⁿ with euclidean metric
- (C) Q with usual metric.
- (D) [0,1] with usual metric

Question Number : 12 Question Id : 70959730213 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

The Cantor set is

- (A) compact with usual topology induced by R.
- (B) compact with discrete topology.
- (C) not compact with respect to any topology.
- (D) None of these.

Question Number: 13 Question Id: 70959730214 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following maps is an isometry?

- (A) $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = x + 1 (\mathbb{R} equipped with usual metric)
- (B) $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x (\mathbb{R} equipped with usual metric)
- (C) Any Lipschitz map
- (D) The map $f:(X,d) \to (X,d')$ defined by f(x) = x where d is a discrete metric.

Question Number: 14 Question Id: 70959730215 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Let A, B be compact subsets of (\mathbb{R}, d) , (d being usual). Then which of the following set is not compact:

- (A) $A \times B$ in $(\mathbb{R}^2, d), d$ being Euclidean
- (B) $A \cup B$ in \mathbb{R}
- (C) $A \cap B$ in \mathbb{R} (provided $A \cap B \neq \emptyset$).
- (D) A \ B in ℝ (provided A \ B ≠ ∅).

Question Number: 15 Question Id: 70959730216 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

Which of the following is not a Baire space?

- (A) R.
- (B) ℝ².
- (C) Cantor set.
- (D) Q.

Question Number: 16 Question Id: 70959730217 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 1 Wrong Marks: 0

The Bolzanno-Weierstrass' Theorem states that:

- (A) every bounded sequence in \mathbb{R}^n with usual metric has a convergent subsequence.
- (B) every Cauchy sequence in a metric space (X, d) is convergent
- (C) every bounded sequence in Rⁿ with usual metric is convergent
- (D) every convergent sequence in a metric space (X, d) is vague statement Cauchy

Question Number: 17 Question Id: 70959730218 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Single Line Question Option: No Option Orientation: Vertical

The subset $\{0\} \times (a, b)$ of \mathbb{R}^2 is:

- (A) Neither open nor closed
- (B) Open
- (C) Closed
- (D) Both open and closed.

 $Question\ Number: 18\ Question\ Id: 70959730219\ Question\ Type: MCQ\ Option\ Shuffling: No\ Display\ Question\ Number: Yes\ Single\ Line\ Question\ Option: No\ Option\ Orientation: Vertical$

Correct Marks: 1 Wrong Marks: 0

Let X, Y be topological spaces and $p: X \longrightarrow Y$ be a quotient map. Let A be subspace of X; let $q: A \longrightarrow p(A)$ be a map obtained by restricting p. Then

- (A) q is quotient if A is open
- (B) q is quotient if A is closed
- (C) q is quotient if p is open
- (D) none of the above

Question Number : 19 Question Id : 70959730220 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

The unit circle S^1 with finite complement topology is

- (A) Hausdorff
- (B) Not Hausdorff
- (C) Normal
- (D) None of the above.

Question Number : 20 Question Id : 70959730221 Question Type : MCQ Option Shuffling : No Display Question Number : Yes Single Line Question Option : No Option Orientation : Vertical

Correct Marks: 1 Wrong Marks: 0

If X is an ordered set in the order topology and if Y is an interval or a ray in X

- (A) Then the subspace topology and order topology on Y are same.
- (B) Then the subspace topology and order topology on Y are different.
- (C) only if Y is a singleton set.
- (D) None of these.

	Topology -2
Section Id:	709597433
Section Number :	2
Section type:	Offline
Mandatory or Optional:	Mandatory
Number of Questions:	10
Number of Questions to be attempted:	10
Section Marks:	30
Display Number Panel:	Yes
Group All Questions:	No

Sub-Section Number: 1

Sub-Section Id: 709597537

No

Question Shuffling Allowed:

Question Number: 21 Question Id: 70959730222 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

Prove that a subset P of a space X is dense in X iff for every non-empty open subset Q of X, $P \cap Q \neq \phi$.

Question Number: 22 Question Id: 70959730223 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

Let (X, d), and (Y, d) be metric spaces. Show that a function $f: X \to Y$ is continuous iff for any open subset V of Y, the subset $f^{-1}(V)$ is open in X.

Question Number: 23 Question Id: 70959730224 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

The closure of any set is the union of the set and the set of its accumulation points.

Prove or disprove.

Question Number: 24 Question Id: 70959730225 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

Let (X, d) be a metric space. For any two distinct elements $p, q \in X$ show that there exists r > 0 such that $B(p, r) \cap B(q, r) = \emptyset$

Question Number: 25 Question Id: 70959730226 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

Let (X, d) be a metric space and let (x_n) be a sequence in X. Then show that $(x_n) \to x$ in X if and only if every subsequence $(x_{n_k}) \to x$ in X.

Question Number : 26 Question Id : 70959730227 Question Type : SUBJECTIVE Display Question Number : Yes Correct Marks : 3

If X has the discrete topology and Y is any topological space, then show that any function $f: X \to Y$ is continuous.

Question Number: 27 Question Id: 70959730228 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

If X and Y are separable then show that $X \times Y$ is also separable.

Question Number : 28 Question Id : 70959730229 Question Type : SUBJECTIVE Display Question Number : Yes Correct Marks : 3

Show that Hausdroff condition is a hereditary property.

Question Number: 29 Question Id: 70959730230 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

If X is a compact space and $A \subset X$ is a closed subset, the show that A is compact.

Question Number: 30 Question Id: 70959730231 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 3

Let X be sequentially compact. Show that for every $\epsilon > 0$ there exists a finite covering of X by ϵ -balls.

Topology -3

Section Id: 709597434

Section Number: 3

Section type : Offline **Mandatory or Optional:** Mandatory

Number of Questions:7Number of Questions to be attempted:5Section Marks:50Display Number Panel:YesGroup All Questions:No

Sub-Section Number: 1

Sub-Section Id: 709597538

Question Shuffling Allowed: No

Question Number: 31 Question Id: 70959730232 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 10

Let $(X, d_1), (Y, d_2), (Z, d_3)$ be metric spaces. Show that

- (i) If $f: X \to Y$ is continuous and $A \subset X$, then $f|_A: A \to Y$ is also continuous.
- (ii) If $f: X \to Y, g: Y \to Z$ are continuous, then $g \circ f$ is also continuous.

Question Number: 32 Question Id: 70959730233 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 10

Prove that $X \times Y$ is compact iff both X and Y are compact.

Question Number: 33 Question Id: 70959730234 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 10

Show that the projection of a product space into each of its coordinate spaces is open.

Question Number: 34 Question Id: 70959730235 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 10

Show that the following are equivalent on a space X:

- X is connected
- (ii) The only subsets of X which are open and closed are X and ϕ
- (iii) X cannot be expressed as union of two disjoint non-empty open sets
- (iv) There is no onto continuous function from X to a discrete space which contains more than one point.

Question Number: 35 Question Id: 70959730236 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 10

Suppose (X, d) is a metric space and suppose $A \subseteq X$. Then prove the following:

- (i) A^o ⊆ A
- (ii) Ao is open
- (iii) A is open if and only if $A = A^{\circ}$

Question Number : 36 Question Id : 70959730237 Question Type : SUBJECTIVE Display Question Number : Yes Correct Marks : 10

Let X be a normal space. Let A be a closed subspace of X. Prove that

- (i) Any continuous map of A into the closed interval [a, b] of \mathbb{R} may be extended to a continuous map of all X into [a, b].
- (ii) Any continuous map of A into \mathbb{R} may be extended to a continuous map of all of X into \mathbb{R} .

Question Number: 37 Question Id: 70959730238 Question Type: SUBJECTIVE Display Question Number: Yes Correct Marks: 10

Let $p: X \longrightarrow Y$ be a quotient map. Let Z be a space and $g: X \longrightarrow Z$ be a map that is constant on each set $p^{-1}(\{y\})$, for $y \in Y$

Then g induces a map $f: Y \longrightarrow Z$ such that $f \circ p = g$. The induced map f is continuous if and only if g is continuous; f is quotient if and only if g is quotient.