National Testing Agency

Question Paper Name: Introduction to Quantum Physics and its Applications 16th February 2020 Shift 1

Subject Name: Introduction to Quantum Physics and its Applications

Creation Date: 2020-02-16 12:58:18

Duration:180Total Marks:90Display Marks:Yes

Introduction to Quantum Physics and its Applications

Group Number:

Group Id: 28860718

Group Maximum Duration:

Group Minimum Duration:

Show Attended Group?:

No
Edit Attended Group?:

No
Break time:

Group Marks:

90
Is this Group for Examiner?:

No

Introduction to Quantum Physics and its Applications

Section Id: 28860718

Section Number: 1
Section type: Online
Mandatory or Optional: Mandatory

Number of Questions: 15
Number of Questions to be attempted: 15
Section Marks: 90

Sub-Section Number: 1

Sub-Section Id: 28860718

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 2886071701 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

From the Planck's formula of blackbody radiation, the energy density of the radiation is linearly dependent of the temperature T for

- (A) all values of frequencies
- (B) values of frequencies satisfying hv ≪ kT
- (C) values of frequencies satisfying hv ≈ kT
- (D) values of frequencies satisfying hv >> kT

Here h is the Planck's constant and k is the Boltzmann's constant.

Options:

2886076794.1

2886076795. 2

2886076796.3

2886076797.4

Question Number: 2 Question Id: 2886071702 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

In a photo-electric experiment, a metal is exposed to a radiation of frequency f and intensity I and a photo-current is observed. We can assume that one electron in the metal absorbs one incident photon. Which of the following statements is true?

- (A) The photocurrent is independent of f and increases if I is increased.
- (B) The photocurrent increases if f is increased and is independent of I
- (C) The photocurrent increases if f is increased and increases if I is increased
- (D) The photocurrent is independent of both f and I.

Options:

2886076798. 1

2886076799, 2

2886076800.3

2886076801.4

Question Number: 3 Question Id: 2886071703 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Consider Balmer series of photon emissions in a Hydrogen atom. Let λ_1 be the shortest wavelength in this series and λ_2 be the longest wavelength. The ratio

$$\lambda_2/\lambda_1$$
 is $\frac{1}{\text{SEP}}$

- (A) 1.2
- (B) 1.4
- (C) 1.6
- (D) 1.8

Options:

2886076802.1

2886076803. 2

2886076804.3

2886076805.4

Question Number: 4 Question Id: 2886071704 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

Consider the square pulse of the form,

$$f(x) = 0 \quad for \ -\infty < x < a$$
$$= 1 \quad for \ a < x < 3a$$

$$= 0$$
 for $3a < x < \infty$

The Fourier transform of this function is

(A)
$$(2a)\frac{\sin(ka)}{ka}$$

(B)
$$(2a)e^{2ika}\frac{\sin(ka)}{ka}$$

(C)
$$(2a)\frac{\sin(2ka)}{ka}$$

(D)
$$(2a)e^{2ika}\frac{\sin(2ka)}{ka}$$

Options:

2886076806.1

2886076807.2

2886076808.3

2886076809.4

Question Number: 5 Question Id: 2886071705 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label : USEFUL INFO: hc = 12400 Angstrom-eV

Consider a potential V(x) which is finite for all values of x. A function f(x) defined to be

$$f(x) = 0 \quad \text{for} \quad -\infty < x < -a$$

$$= a - |x| \quad \text{for} \quad -a < x < a$$

$$= 0 \quad \text{for} \quad a < x < \infty$$

This function can not be a wave function of a bound state of V(x) because

- (A) it can not be normalized
- (B) it is not continuous
- (C) its first derivative is not defined at all points
- (D) all of the above reasons

Options:

2886076810.1

2886076811. 2

2886076812.3

2886076813.4

Question Number: 6 Question Id: 2886071706 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

A one dimensional potential barrier is of the form

$$V(x) = 0 \quad for \quad -\infty < x < 0$$
$$= V_0 \quad for \quad 0 < x < \infty$$

where V_0 is positive. A stream of electrons of kinetic energy 100 eV is directed to this barrier from $-\infty$. It is found that 80% of these electrons are reflected back. The mass of electron, in energy units, is 500, 000 eV. The approximate value of V_0 (in eV) is

- (A) 99.75
- (B) 99.0
- (C)90.0
- (D) 80.0

Options:

2886076814.1

2886076815, 2

2886076816.3

2886076817.4

Question Number: 7 Question Id: 2886071707 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

Consider a one dimensional infinite potential well from x = 0 to x = L. A particle in this well is in the n = 3 state (the second excited state). The probability of finding the particle between x = L/6 and x = 2L/3 is [1]

- (A) 5/6 SEP
- (B) 2/3
- (C) 1/2
- (D) 1/3

Options:

2886076818. 1

2886076819. 2

2886076820.3

2886076821.4

Question Number: 8 Question Id: 2886071708 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

A one dimensional, finite potential barrier has the form

$$V(x) = 0 \quad for \quad -\infty < x < 0$$
$$= V_0 \quad for \quad 0 < x < L$$
$$= 0 \quad for \quad L < x < \infty$$

where V_0 is a positive constant. A beam of particles with kinetic energy $0 < E < V_0$ is incident on the barrier from $x = -\infty$. The probabilitity of a particle tunneling through the barrier is P. Which of the following statements is correct?

- (A) P is larger if L is larger and is larger if Vo is larger sepsep
- (B) P is larger if L is smaller and is larger if Vo is larger
- (C) P is larger if L is larger and is larger if Vo is smaller sepsep
- (D) P is larger if L is smaller and is larger if Vo is smaller

Options:

2886076822, 1

2886076823. 2

2886076824.3

2886076825.4

Question Number: 9 Question Id: 2886071709 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

Consider a three dimensional infinite potential well, extending from $0 \le x \le L$, $0 \le y \le L$ and $0 \le z \le L$. A particle in this well has energy $\frac{(51\pi^2\hbar^2)}{(2mL^2)}$. The number of distinct states this particle can occupy are

- (A) 1
- (B) 3
- (C) 6
- (D) 9

Options:

2886076826. 1

2886076827. 2

2886076828.3

2886076829, 4

 $Question\ Number: 10\ Question\ Id: 2886071710\ Question\ Type: MCQ\ Option\ Shuffling: No$

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

A certain thermodynamic system has the non-degenerate energy levels, with energies 0, E, 3E, 5E, 9E. Suppose that there are four identical bosons, with total energy 10E. The number of possible distributions of these particles is

- (A) 4
- (B) 3
- (C) 2
- (D) 1

Options:

2886076830, 1

2886076831, 2

2886076832, 3

2886076833.4

Question Number: 11 Question Id: 2886071711 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

The Fermi energy of Cu is 7 eV. The mass of electron, in energy units, is 500.000 eV. The de Broglie wavelength of the conducting electrons in Cu, in units of Angstroms, will be (approximately)

- (A) 0.8
- (B) 1.6
- (C)4.7
- (D) 6.5

Options:

2886076834. 1

2886076835, 2

2886076836.3

2886076837.4

Question Number: 12 Question Id: 2886071712 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

A non-relativistic particle of mass m is held in a circular orbit around the origin by an attractive force f(r) = -kr where k is a positive constant Assuming the Bohr quantization of the angular momentum of the particle, quantized energy of the particle is

(A)
$$E = n^2 \hbar \left(\frac{k}{m}\right)^{1/2}$$

(B) $E = n \hbar \left(\frac{k}{m}\right)^{1/2}$

(B)
$$E = n \hbar \left(\frac{k}{m}\right)^{1/2}$$

(C)
$$E = n^{1/2} \hbar \left(\frac{k}{m}\right)^{1/2}$$

(D)
$$E = n^{1/3}\hbar \left(\frac{k}{m}\right)^{1/2}$$

Options:

2886076838.1

2886076839, 2

2886076840.3

2886076841.4

Question Number: 13 Question Id: 2886071713 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label : USEFUL INFO: hc = 12400 Angstrom-eV

Inter-atomic spacing in most solids is about one angstrom. To measure such spacing in a diffraction experiment, usually high energy X-rays, (with energy of thousands of eV) are used. But such measurements can also be done with low energy neutrons. Mass of neutron, in energy units, is 940 million eV. If a neutron is used in a diffraction experiment to measure an inter-atomic spacing of one angstrom, its kinetic energy (in eV) is

- (A) 0.082
- (B) 0.041
- (C) 0.026
- (D) 0.013

Options:

2886076842. 1

2886076843. 2

2886076844.3

2886076845.4

Question Number: 14 Question Id: 2886071714 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label: USEFUL INFO: hc = 12400 Angstrom-eV

Given a wave function $\psi(x) = \frac{N}{x^2 + a^2}$, the normalization constant (N) is

(A)
$$\left(\frac{2a^2}{\pi}\right)^{1/2}$$

(B)
$$\left(\frac{a^3}{a}\right)^{1/2}$$

(B)
$$\left(\frac{a^3}{\pi}\right)^{1/2}$$

(C) $\left(\frac{a^3}{2\pi}\right)^{1/2}$

(D)
$$\left(\frac{a^3}{8\pi}\right)^{1/2}$$

Options:

2886076846, 1

2886076847, 2

2886076848.3

2886076849.4

Question Number: 15 Question Id: 2886071715 Question Type: MCQ Option Shuffling: No

Correct Marks: 6 Wrong Marks: 0

Question Label : USEFUL INFO: hc = 12400 Angstrom-eV

A particle of mass m is trapped in a one dimensional potential given by V(x) = $m\omega^2 x^2/2$. At a time t=0, the state of the particle is described by the wave function $\psi(x) = \frac{1}{\sqrt{2}} [\psi_1 + \psi_2]$, where $\psi_1(x)$ and $\psi_2(x)$ are the normalized ground and first excited states for the oscillator. The probability density $|\psi(x),t|^2$ oscillates with angular frequency

- $(A) 8\omega$
- $(B) 5\omega$
- $(C) 3\omega$
- (D) ω

Options:

2886076850, 1

2886076851. 2

2886076852.3

2886076853.4