National Testing Agency

Question Paper Name: Numerical Methods in Civil Engineering 16th February 2020 Shift 1

Subject Name: Numerical Methods in Civil Engineering

Creation Date: 2020-02-16 12:58:19

Duration:180Total Marks:100Display Marks:Yes

Numerical Methods in Civil Engineering

Group Number:

Group Id: 28860719

Group Maximum Duration:

Group Minimum Duration:

Show Attended Group?:

No
Edit Attended Group?:

No
Break time:

O
Group Marks:

100
Is this Group for Examiner?:

No

Section 1

Section Id: 28860719
Section Number: 1
Section type: Online
Mandatory or Optional: Mandatory
Number of Questions: 55

Number of Questions: 55
Number of Questions to be attempted: 55
Section Marks: 55

Sub-Section Number: 1

Sub-Section Id: 28860719

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 2886071716 Question Type: MCQ Option Shuffling: No

Inherent error in a given equation

- (a) represents error of the numerical method considered in computation
- (b) represents error due to rounding off and truncation
- (c) can be controlled through convergence studies
- (d) cannot be estimated

Options:

2886076854, 1

2886076855. 2

2886076856.3

2886076857.4

Question Number: 2 Question Id: 2886071717 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

What does zero determinant of a square matrix signify?

- (a) Rows and/or columns are linearly independent vector
- (b) Matrix is non-invertible
- (c) Rows and/or columns are linearly independent vector as well as matrix is non-invertible
- (d) Given matrix equations are homogeneous.

Options:

2886076858, 1

2886076859. 2

2886076860.3

2886076861.4

Question Number: 3 Question Id: 2886071718 Question Type: MCQ Option Shuffling: No

How to get solution for a matrix equation $[K]_{mxn} \{q\}_{nx1} = \{f\}_{mx1}$ when m>n?

- (a) Delete any (m-n) rows to make matrix square
- (b) Use method of least squares to approximately solve the equations
- (c) Use method of LU decomposition to solve the equations
- (d) Solution is not possible to obtain.

Options:

2886076862. 1

2886076863, 2

2886076864.3

2886076865, 4

Question Number: 4 Question Id: 2886071719 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

______technique is used reduce the dimensionality of a large stiffness matrix.

- (a) Static condensation
- (b) Gauss elimination
- (c) LU decomposition
- (d) Method of least square

Options:

2886076866. 1

2886076867. 2

2886076868.3

2886076869.4

Question Number: 5 Question Id: 2886071720 Question Type: MCQ Option Shuffling: No

- (a) Eigenvalue problem
- (b) Initial value problem
- (c) Boundary value problem
- (d) Boundary initial value problem

Options:

2886076870.1

2886076871. 2

2886076872.3

2886076873.4

Question Number: 6 Question Id: 2886071721 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

For the partial differential equation $\frac{\partial^4 T}{\partial x^4} + \frac{\partial^4 T}{\partial y^4} + 2 \frac{\partial^4 T}{\partial x^2 \partial y^2} = 0$, the finite difference molecule for the partial differentiations is of the form:

What is the value of x?

- (a)-4
- (b) -2
- (c) 2
- (d) 4

Options:

2886076874.1

2886076875.2

2886076876.3

2886076877.4

Question Number: 7 Question Id: 2886071722 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Choose the correct option regarding standard eigenvalue problem (SEVP).

- (a) SEVP is used in the determination of shear stresses for the given state of stress.
- (b) SEVP is used in the determination of octahedral stresses for the given state of stress.
- (c) SEVP is used in the determination of modes of a structure.
- (d) SEVP is used in determination of principal stresses for the given state of stress.

Options:

2886076878.1

2886076879. 2

2886076880, 3

2886076881.4

Question Number: 8 Question Id: 2886071723 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

For pipe network analysis, which of the model is preferred?

(a) 1D model

(b) 2D model

(c) 3D model

(d) None of the above

Options:

2886076882. 1

2886076883. 2

2886076884.3

2886076885, 4

Question Number: 9 Question Id: 2886071724 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

In mathematical modeling, which one of the followings is the most important step?

- (a) Sensitivity analysis
- (b) Data collection
- (c) Conceptualization
- (d) Coding

Options:

2886076886. 1

2886076887. 2

2886076888.3

2886076889.4

Question Number: 10 Question Id: 2886071725 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Which of the following is static formulation?

- (a) Partial differential equation
- (b) Difference equation
- (c) Algebraic equation
- (d) Integral equation

Options:

2886076890.1

2886076891. 2

2886076892.3

2886076893.4

Question Number: 11 Question Id: 2886071726 Question Type: MCQ Option Shuffling: No

Amongst the methods mentioned below, which is the best numerical method for a totally irregular domain?

- (a) Finite difference method
- (b) Finite element method
- (c) Finite volume method
- (d) Meshfree method

Options:

2886076894, 1

2886076895.2

2886076896.3

2886076897.4

Question Number: 12 Question Id: 2886071727 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

For which of the following equations is the standard five-point formula applicable?

- (a) Laplace equation
- (b) Diffusion equation
- (c) Laplace as well as Diffusion equations
- (d) None of the above

Options:

2886076898.1

2886076899. 2

2886076900.3

2886076901.4

Question Number: 13 Question Id: 2886071728 Question Type: MCQ Option Shuffling: No

Which of the following is not an explicit FDM scheme? (a) Four-point formula (b) Leap-frog formula (c) Priessmann formula (d) Upstream differencing scheme **Options:** 2886076902. 1 2886076903. 2 2886076904.3 2886076905.4 Question Number: 14 Question Id: 2886071729 Question Type: MCQ Option Shuffling: No Correct Marks: 1 Wrong Marks: 0.5 For a 3D problem solution using BEM, which is the preferred element? (a) Tetrahedron (b) Prism element (c) Triangular element (d) Line element **Options:** 2886076906, 1 2886076907. 2 2886076908.3 2886076909.4 Question Number: 15 Question Id: 2886071730 Question Type: MCQ Option Shuffling: No Correct Marks: 1 Wrong Marks: 0.5 Which of the following is NOT a meshfree method?

- (a) Radial Point Collocation Method
- (b) Finite Volume Method
- (c) Finite Point Method
- (d) Smoothed Particle Hydrodynamics

```
Options:
2886076910.1
2886076911, 2
2886076912.3
2886076913.4
Question Number: 16 Question Id: 2886071731 Question Type: MCQ Option Shuffling: No
Correct Marks: 1 Wrong Marks: 0.5
In BEM simulation, the matrix is:
      (a) Tri-diagonal
      (b) Fully populated
      (c) Banded
      (d) None of the above
Options:
2886076914.1
2886076915.2
2886076916, 3
2886076917.4
Question Number: 17 Question Id: 2886071732 Question Type: MCQ Option Shuffling: No
Correct Marks: 1 Wrong Marks: 0.5
 In Meshfree method, we use:
       (a) Only elements
       (b) Only grids
       (c) Only nodes
       (d) Mesh and grids
Options:
2886076918, 1
2886076919. 2
2886076920.3
2886076921.4
```

Question Number: 18 Question Id: 2886071733 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Smooth Particle Hydrodynamics (SPH) formulation is:

- (a) Series representation
- (b) Differential representation
- (c) Integral representation
- (d) None of the above

Options:

2886076922. 1

2886076923. 2

2886076924.3

2886076925.4

Question Number: 19 Question Id: 2886071734 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

For Radial Point Collocation method, which is the most suitable shape function?

- (a) Polynomial
- (b) Logarithmic
- (c) Multi-quadrics
- (d) Lagrangian

Options:

2886076926.1

2886076927.2

2886076928.3

2886076929.4

Question Number: 20 Question Id: 2886071735 Question Type: MCQ Option Shuffling: No

At which step does the meshfree method depart from FEM?

- (a) Construction of shape function
- (b) Mesh creation
- (c) Geometry creation
- (d) Solving the algebraic equations

Options:

2886076930. 1

2886076931. 2

2886076932.3

2886076933.4

Question Number: 21 Question Id: 2886071736 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

What is the effect of the number of source points on the accuracy of the solution in BEM?

- (a) Greater the number of source points, greater is the accuracy
- (b) Greater the number of source points, lesser is the accuracy
- (c) Accuracy doesn't depend on the number of source points
- (d) Depends on the problem

Options:

2886076934, 1

2886076935. 2

2886076936.3

2886076937.4

Question Number: 22 Question Id: 2886071737 Question Type: MCQ Option Shuffling: No

In BEM, which of the elements have greater accuracy and computational cost respectively?

- (a) Linear elements, Constant elements
- (b) Linear elements, Same for both linear and constant elements
- (c) Constant elements, linear elements
- (d) Same for both linear and constant elements, Constant elements

Options:

2886076938, 1

2886076939, 2

2886076940.3

2886076941.4

Question Number: 23 Question Id: 2886071738 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Which of the following is not an advantage of DRBEM?

- (a) DRBEM is simple and result oriented
- (b) Discretization is done only on the boundary
- (c) Data handling is easy
- (d) Reduction in the dimensionality of the problem is greater than that in BEM

Options:

2886076942.1

2886076943.2

2886076944.3

2886076945.4

Question Number: 24 Question Id: 2886071739 Question Type: MCQ Option Shuffling: No

- (a) FastBEM
- (b) ParaFEM
- (c) MOOSE
- (d) AcouSTO

Options:

2886076946. 1

2886076947. 2

2886076948, 3

2886076949.4

Question Number: 25 Question Id: 2886071740 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Which of the following is zero outside the local support domain?

- (a) Shape function value
- (b) Field variable value
- (c) Approximate function value
- (d) All of the above

Options:

2886076950, 1

2886076951.2

2886076952.3

2886076953.4

Question Number: 26 Question Id: 2886071741 Question Type: MCQ Option Shuffling: No

In the case of irregular distribution of nodes, the distance between two neighboring nodes while calculating the size of support domain, can be taken as:

- (a) Maximum nodal spacing
- (b) Average nodal spacing
- (c) Minimum nodal spacing
- (d) 1.5 times the average nodal spacing

Options:

2886076954, 1

2886076955, 2

2886076956.3

2886076957.4

Question Number: 27 Question Id: 2886071742 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Which of the following is NOT a meshfree approximation technique?

- (a) Integral representation
- (b) Differential representation
- (c) Series representation
- (d) Finite volume representation

Options:

2886076958. 1

2886076959. 2

2886076960.3

2886076961.4

Question Number: 28 Question Id: 2886071743 Question Type: MCQ Option Shuffling: No

The advantage of Radial Point Interpolation Method (RPIM) over Polynomial Point Interpolation Method (PPIM) is

- (a) The number of unknown coefficients to be determined is less in RPIM
- (b) Easy to calculate
- (c) The solution is stable and the final matrix is not singular
- (d) The computational cost is less for RPIM

Options:

2886076962. 1

2886076963.2

2886076964.3

2886076965.4

Question Number: 29 Question Id: 2886071744 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

The points at the intersection of the lines diving the domain are called

- (a) Nodal points
- (b) Mesh points
- (c) Lattice points
- (d) All of the above

Options:

2886076966, 1

2886076967. 2

2886076968.3

2886076969.4

Question Number: 30 Question Id: 2886071745 Question Type: MCQ Option Shuffling: No

- (a) Reducing the nodal distance value at the nodes, which has the effect of irregular boundary, by some factors whose values are less than 1
- (b) Considering the irregular boundary to be regular by ignoring the irregularity
- (c) Taking the value at the nodes effected by the irregular boundary as an average of the value at the surrounding nodes
- (d) All of the above

Options:

2886076970.1

2886076971. 2

2886076972.3

2886076973.4

 $Question\ Number: 31\ \ Question\ Id: 2886071746\ \ Question\ Type: MCQ\ \ Option\ Shuffling: No$

Correct Marks: 1 Wrong Marks: 0.5

If the value of field variable is taken as β (fully implicit) + $(1 - \beta)$ (fully explicit), then for the Preissman scheme, the value of β is:

(a)0.5

(b) 0.6 to 0.7

(c) 0.3 to 0.4

(d)1

Options:

2886076974.1

2886076975. 2

2886076976.3

2886076977.4

Question Number: 32 Question Id: 2886071747 Question Type: MCQ Option Shuffling: No

Explicit FDM schemes are stable when

- (a) Peclet number ≤ 1
- (b) Courant number ≤ 1
- (c) Peclet number ≤ 2
- (d) Courant number ≤ 2

Options:

2886076978, 1

2886076979.2

2886076980, 3

2886076981.4

Question Number: 33 Question Id: 2886071748 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

In BEM, the source points are taken

- (a) On the boundary
- (b) Inside the domain
- (c) Outside the domain
- (d) Inside the domain and on the boundary

Options:

2886076982.1

2886076983. 2

2886076984.3

2886076985.4

Question Number: 34 Question Id: 2886071749 Question Type: MCQ Option Shuffling: No

Assertion (A): The exact solutions of engineering problems are difficult to find

Reason (R): Numerical methods became a powerful tool for solving engineering problems

- (a) Both A and R are correct and R explains A
- (b) Both A and R are correct and R doesn't explain A
- (c) A is correct and R is incorrect
- (d) Both A and R are incorrect

Options:

2886076986.1

2886076987.2

2886076988.3

2886076989.4

Question Number: 35 Question Id: 2886071750 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Crank Nicholson scheme is

- (a) 40% implicit and 60% explicit
- (b) 40% explicit and 60% implicit
- (c) 50% explicit and 50% implicit
- (d) Fully implicit

Options:

2886076990. 1

2886076991.2

2886076992.3

2886076993.4

Question Number: 36 Question Id: 2886071751 Question Type: MCQ Option Shuffling: No

Following tasks are performed in Meshfree methods.

- i. Creation of support domain
- ii. Domain representation
- iii. Solve global Meshfree equations
- iv. Formulation of system of equations
- v. Application of boundary conditions

What is the correct sequence of the steps in solving by Meshfree methods?

(a)i, ii, iv, iii, v

(b) ii, i, iv, v, iii

(c) i, ii, v, iv, v

(d) i, v, ii, iv, iii

Options:

2886076994.1

2886076995, 2

2886076996.3

2886076997.4

Question Number: 37 Question Id: 2886071752 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

In the method of weighted residuals,

- (a) The governing equation is solved directly
- (b) The governing equation is integrated in the domain
- (c) A trial function is assumed as a solution
- (d) A test function is assumed as a solution

Options:

2886076998. 1

2886076999, 2

2886077000.3

2886077001.4

Question Number: 38 Question Id: 2886071753 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

In Galerkin's method,

- (a) Weighting functions are same as approximating functions
- (b) Trail functions have unknown adjustable values
- (c) Residual is made zero at some points in the domain
- (d) Central differencing is used

Options:

2886077002. 1

2886077003. 2

2886077004.3

2886077005.4

Question Number: 39 Question Id: 2886071754 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

In FEM, the trial functions

- (a) Are defined over the entire domain
- (b) Have to satisfy boundary conditions
- (c) Are defined element wise
- (d) None of the above

Options:

2886077006. 1

2886077007. 2

2886077008.3

2886077009.4

Question Number: 40 Question Id: 2886071755 Question Type: MCQ Option Shuffling: No

In which formulation, can the unknown values be expressed directly in terms of known values?

(a) Crank Nicholson

(b) Priessmann

(c) Fully Implicit

(d) Fully Explicit

Options:

2886077010.1

2886077011. 2

2886077012.3

2886077013.4

 $Question\ Number: 41\ \ Question\ Id: 2886071756\ \ Question\ Type: MCQ\ \ Option\ Shuffling: No$

Correct Marks: 1 Wrong Marks: 0.5

Match the models presented under Column 1 of the table to the statements under Column 2 of the table.

Column 2	
i – Relationships are represented in	
formulae	
ii - May be smaller or larger than the	
actual object	
iii – Enlargement of the prototype	
iv – Electric model for groundwater	
v – Complex problems	
-	

$$(a)I-i$$
, $II-ii$, $III-iii$, $IV-v$

(c)
$$I - V$$
, $II - II$, $III - IV$, $IV - I$

$$(d)I-v$$
, $II-iii$, $III-ii$, $IV-i$

Options:

2886077014, 1 2886077015.2 2886077016.3 2886077017, 4 Question Number: 42 Question Id: 2886071757 Question Type: MCQ Option Shuffling: No Correct Marks: 1 Wrong Marks: 0.5 In fluid mechanics, for solution of Navier-Stokes equation, Plane Couette flow problem is an example of solution by (a) Analytical (b) FDM (c) FEM (d) Meshfree **Options:** 2886077018, 1 2886077019.2 2886077020.3 2886077021.4 Question Number: 43 Question Id: 2886071758 Question Type: MCQ Option Shuffling: No Correct Marks: 1 Wrong Marks: 0.5 Assuming an infinite sum series as a finite one results in (a) Truncation error (b) Round off error (c) Gross error (d) Systematic error

Options:

2886077022, 1

2886077023, 2

2886077024.3

2886077025.4

Question Number: 44 Question Id: 2886071759 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

FDM uses

- (a) Numerical differentiation
- (b) Numerical integration
- (c) Integration by parts
- (d) Euler method

Options:

2886077026, 1

2886077027, 2

2886077028.3

2886077029.4

Question Number: 45 Question Id: 2886071760 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

If the Newton's forward difference table is written for x_0 to x_5 , which of the following values can be obtained from the table?

- (a) ∆6x0
- $(b) \Delta^5 x_3$
- (c) ∆5x0
- $(d) \Delta^5 x_5$

Options:

2886077030, 1

2886077031.2

2886077032.3

2886077033.4

Question Number: 46 Question Id: 2886071761 Question Type: MCQ Option Shuffling: No

Which one of the followings is TRUE for a singular matrix A (size n x n)?

- (a) Determinant of matrix A is non-zero.
- (b) Unique solution exists for a system Ax=b.
- (c) Rows of matrix A are linearly independent.
- (d) Matrix A is rank deficit.

Options:

2886077034, 1

2886077035, 2

2886077036.3

2886077037.4

Question Number: 47 Question Id: 2886071762 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Absolute error is 0.012 in an approximate number 31.23420712. The relative error is

(a) 0.038%

(b) 0.076%

(c) -0.038%

(d)-0.076%

Options:

2886077038. 1

2886077039, 2

2886077040.3

2886077041.4

Question Number: 48 Question Id: 2886071763 Question Type: MCQ Option Shuffling: No

Find the value of x in the given equation.

$$\begin{bmatrix} 2 & 4 \\ x & -3 \end{bmatrix} \begin{Bmatrix} 1 \\ -1 \end{Bmatrix} = \begin{Bmatrix} -2 \\ 15 \end{Bmatrix}$$

(a) 5

(b)-5

(c) 12

(d)-12

Options:

2886077042.1

2886077043.2

2886077044.3

2886077045.4

Question Number: 49 Question Id: 2886071764 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Find the value of D in the given equation.

$$\begin{bmatrix} 4 & -2 \\ 1 & 3 \end{bmatrix}^{-1} = \frac{1}{D} \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$$

(a)56

(b) 14

(c)7

(d) 5

Options:

2886077046.1

2886077047. 2

2886077048.3

2886077049.4

Question Number: 50 Question Id: 2886071765 Question Type: MCQ Option Shuffling: No

- (a) Evaluation of Natural Frequencies
- (b) Evaluation of Damping Parameters
- (c) Evaluation of Buckling Loads
- (d) Evaluation of Principal Stresses

Options:

2886077050.1

2886077051.2

2886077052.3

2886077053.4

Question Number: 51 Question Id: 2886071766 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Static condensation is used for

- (a) computation of eigenvalues
- (b) dynamic relaxation
- (c) sub-structuring
- (d) in-core solution

Options:

2886077054. 1

2886077055.2

2886077056.3

2886077057.4

Question Number: 52 Question Id: 2886071767 Question Type: MCQ Option Shuffling: No

Following statements are made for Initial Value Problem.

- It is governed by ordinary differential equation.
- It always pertains to open domain.
- III. It is always even ordered.
- IV. It is solved by marching methods.

Which of the following option is applicable?

- (a) Only statements I and II are correct.
- (b) Only statements III and IV are correct.
- (c) All statements are correct.
- (d) Only statements I, II and IV are correct.

Options:

2886077058, 1

2886077059. 2

2886077060.3

2886077061.4

Question Number: 53 Question Id: 2886071768 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

Which one of the following time marching method is unconditionally stable?

- (a) Central Difference Method
- (b) Newmark's Average Acceleration Method
- (c) Newmark's Linear Acceleration Method
- (d) Explicit Euler's Method

Options:

2886077062. 1

2886077063. 2

2886077064.3

2886077065.4

Question Number: 54 Question Id: 2886071769 Question Type: MCQ Option Shuffling: No

During following step of finite element method, compatibility conditions are satisfied.

- (a) Formulation of Shape functions
- (b) Formulation of Constitutive Law
- (c) Assembly
- (d) Computation of Secondary Unknowns

Options:

2886077066, 1

2886077067. 2

2886077068.3

2886077069.4

Question Number: 55 Question Id: 2886071770 Question Type: MCQ Option Shuffling: No

Correct Marks: 1 Wrong Marks: 0.5

What are the eigenvalues for the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$?

- (a) 5, 1
- (b) -5, 1
- (c) 5, -1
- (d) -5, -1

Options:

2886077070.1

2886077071. 2

2886077072.3

2886077073.4

Section 2

Section Id : Section Number : Section type : 28860720 2

Online

Mandatory or Optional: Mandatory

Number of Questions: 15
Number of Questions to be attempted: 15
Section Marks: 45

Sub-Section Number: 1

Sub-Section Id: 28860720 **Question Shuffling Allowed:** Yes

Question Number: 56 Question Id: 2886071771 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Following statements are made for a set of two simultaneous algebraic equations, Ax+By+C=0 and Dx+Ey+F=0 where A, B, C, D, E and F are coefficients whereas x and y are unknowns to be determined.

- i. It is a set of linear equations if A, B, C, D, E and F are constant.
- ii. It is a set of homogeneous equations if C and F are a function of x as well as y and all other coefficients are constant.
- iii. It is a set of linear equations if B and E are a function of x and all other coefficients are constant.
- iv. It is a set of non-linear equations if A and D are a function of x and all other coefficients are constant.

Which of the following option is applicable?

- (a) Statements i and ii are correct
- (b) Statements i and iii are correct
- (c) Statements i, ii and iv are correct
- (d) Statements I, ii, iii and iv are correct

Options:

2886077074.1

2886077075.2

2886077076.3

2886077077.4

Question Number: 57 Question Id: 2886071772 Question Type: MCQ Option Shuffling: No

Four methods are mentioned below to solve nonlinear algebraic equations.

- i. The secant method.
- ii. The bisection method.
- iii. The false-position method.
- iv. The Newton-Raphson method.

Which one of the following option is correct?

- (a) ii and iii are bracketing methods
- (b) i and ii are bracketing methods
- (c) i, ii and iv are bracketing methods
- (d) iii and iv are bracketing methods

Options:

2886077078.1

2886077079, 2

2886077080.3

2886077081.4

Question Number: 58 Question Id: 2886071773 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Following statements are made regarding different problems in differential equation domain.

- Initial value problems can be represented by ordinary differential equations.
- ii. Boundary initial value problems can be represented by ordinary differential equations
- Boundary initial value problems can be represented by partial differential equations.
- iv. Eigenvalue problems are special type of boundary value problems.

Which one of the following option is correct?

- (a) Only statement iv is correct
- (b) Statements i and ii are correct
- (c) Statements i, iii and iv are correct
- (d) Statements ii and iv are correct

Options: 2886077082. 1 2886077083. 2

2886077084.3

2886077085.4

Question Number: 59 Question Id: 2886071774 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Refer to following numerical methods.

i. Point collocation method.

- ii. Method of least square.
- iii. Finite difference method.
- iv. Rayleigh-Ritz method.

Which of the following option applies for methods used to solve Differential Equations?

(a) Only iv

(b) i and ii

(c) i, ii and iv

(d)i, ii and iii

Options:

2886077086.1

2886077087. 2

2886077088.3

2886077089.4

Question Number: 60 Question Id: 2886071775 Question Type: MCQ Option Shuffling: No

Following are the statements regarding shape function (N_i) pertaining to finite element method for one dimensional C° continuum problems.

- i. $\sum N_i$ is always 1.
- ii. Value of N_i is 1 for a particular node and zero at all other nodes.
- iii. For a bar element, shape functions are always linear.

Choose the correct option.

- (a) Statements i, ii and iii are correct
- (b) Statements i and ii are correct
- (c) Statements i and iii are correct
- (d) Statements ii and iii are correct

Options:

2886077090.1

2886077091.2

2886077092.3

2886077093.4

Question Number: 61 Question Id: 2886071776 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Following are the statements regarding partial differential equations.

- i. $\nabla^2 T = 0 \rightarrow \text{Laplace's equation}$.
- ii. $\nabla^2 T = q \rightarrow \text{Poisson's equation}$.
- iii. $\nabla^4 T = \mathbf{0} \to \text{Bi-harmonic equation}$.

Choose the correct option.

- (a) Statements i, ii and iii are correct
- (b) Statements i and ii are correct
- (c) Statements i and iii are correct
- (d) Only Statement iii is correct

Options:

2886077094.1

2886077095.2

2886077096.3

2886077097.4

Question Number: 62 Question Id: 2886071777 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Which is the general solution of $u_{xx} = 2$ when u: u(x,y)?

(a)
$$U = x^2 + f(y) + g(x) + C$$

(b)
$$U = X^2 + X f(y) + g(y) + C$$

(c)
$$U = X^2 + X f(y) + g(x) + C$$

$$(d)U = x^2 + f(y) + y g(x) + C$$

Options:

2886077098, 1

2886077099, 2

2886077100.3

2886077101.4

Question Number: 63 Question Id: 2886071778 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Consider the equation:

$$\frac{d^2u}{dx^2} = 2\frac{du}{dx} + \frac{u}{2}$$

The boundary conditions are given as: u(x = 0) = 15 and u(x = 10) = 10. What is the value of u at x = 2.5?

- (a)5.9
- (b)8.6
- (c)9.8
- (d) 10.2

Options:

2886077102.1

2886077103.2

2886077104.3

2886077105.4

Question Number: 64 Question Id: 2886071779 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Consider the data given below:

$x_0 = 0$	$x_1 = 1$	x ₂ = 2	$x_3 = 3$	×4 = 4
y ₀ = 1	$y_1 = 1.2$	y ₂ = 1.35	y ₃ = 1.4	y ₄ = 1.42

What will be the values of μy_2 , Ey₁ and Iy₃?

(a) 1.35, 1.3, 1.42

(b) 1.3, 1.35, 1.35

(c) 1.3, 1.35, 1.4

(d) 1.35, 1.42, 1

Options:

2886077106.1

2886077107.2

2886077108.3

2886077109.4

Question Number: 65 Question Id: 2886071780 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

What is the approximate derivative of $f(x) = x^2$ at x = 1 for h = 0.1? Use the forward difference formula.

(a)2.2

(b) 2.05

(c) 2

(d)2.1

Options:

2886077110. 1

2886077111. 2

2886077112.3

2886077113.4

Question Number: 66 Question Id: 2886071781 Question Type: MCQ Option Shuffling: No

For an approximate number x^* , if $x^* = -32.281$, $\Delta x = 0.001$, what are the correct digits?

(a)3,2,2,8,1

(b) 3,2,2,8

(c)3,2,2

(d)3,2

Options:

2886077114.1

2886077115.2

2886077116.3

2886077117, 4

Question Number: 67 Question Id: 2886071782 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

Given:

<	0.5	1.0	2.0	3.0
/	4.0	3.0	1.5	1.0

Fit exponential model $y(x) = Ae^{-0.5x}$ and find the value of A.

(a) 4.6418

(b) 4.7148

(c) 4.8257

(d) 4.0154

Options:

2886077118.1

2886077119.2

2886077120.3

2886077121.4

Question Number: 68 Question Id: 2886071783 Question Type: MCQ Option Shuffling: No

Given:

С	1	3	6	9
f(x)	6	26	101	230

Find f(5) by using Newton's divided difference interpolating polynomial of third degree.

- (a) 46
- (b) 64
- (c) 68
- (d)70

Options:

2886077122.1

2886077123. 2

2886077124.3

2886077125.4

Question Number: 69 Question Id: 2886071784 Question Type: MCQ Option Shuffling: No

Correct Marks: 3 Wrong Marks: 1

The consistent load vector $\{f\}$ for a three-node axial bar of length 3m subjected to a uniformly distributed load of intensity $5 \, \text{kN/m}$ is

$$(a)\{f\} = [5.0, 5.0, 5.0]^{T}$$

(b){
$$f$$
} = [2.5, 10, 2.5]^T

(c)
$$\{f\} = [3.75, 7.5, 3.75]^{\mathsf{T}}$$

$$(d)\{f\} = [0.0, 15.0, 0.0]^T$$

Options:

2886077126.1

2886077127, 2

2886077128.3

2886077129, 4

Question Number: 70 Question Id: 2886071785 Question Type: MCQ Option Shuffling: No

Consider the governing equation:

$$\frac{\partial^2 z(x,t)}{\partial x^2} = \frac{\partial z(x,t)}{\partial t}$$

Given: z(x, 0) = 15, z(0, 5) = 25, z(5, 5) = 100. Find the value of z at (2.5, 5). The solution is required to be stable.

- (a) 28.25
- (b)36.11
- (c) 62.50
- (d)71.98

Options:

- 2886077130.1
- 2886077131.2
- 2886077132.3
- 2886077133.4