National Testing Agency

Question Paper Name:

Introduction to Quantum Physics and its Applications 15

September 2020 Shift 1

Subject Name: Introduction to Quantum Physics and its Applications

Creation Date: 2020-09-15 13:26:32

Duration :180Total Marks :90Display Marks:YesShare Answer Key With Delivery Engine :YesActual Answer Key :Yes

Introduction to Quantum Physics and its Applications

Group Number:

Group Id: 89951413

Group Maximum Duration :0Group Minimum Duration :120Show Attended Group? :NoEdit Attended Group? :NoBreak time :0Group Marks :90Is this Group for Examiner? :No

Introduction to Quantum Physics and its Applications

Section Id: 89951413

Section Number:

Section type:

Online

Mandatory or Optional: Mandatory

Number of Questions: 15 15 **Number of Questions to be attempted: Section Marks:** 90 **Display Number Panel:** Yes **Group All Questions:** Yes Mark As Answered Required?: Yes **Sub-Section Number: Sub-Section Id:** 89951422

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 8995141011 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 6 Wrong Marks: 0

The energy density u of radiation in a blackbody, in thermal equilibrium at temperature T, is also a function of the frequency of radiation ν . The function $u(\nu, T) \rightarrow 0$ for both $\nu \rightarrow 0$ and $\nu \rightarrow \infty$. It attains its maximum value for some $\nu_{\rm max}$. The approximate value of $\nu_{\rm max}$ is (k and h are Boltzmann and Planck's constants respectively)

- (A) kT/h
- **(B)** 2kT/h
- (C) 3kT/h
- **(D)** 4kT/h

Options:

8995144021.1

8995144022. 2

8995144023.3

8995144024.4

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 6 Wrong Marks: 0

A light of frequency ν is incident on a metal and a photocurrent was emitted. This photocurrent is stopped when a potential V_S (stopping potential) is applied to the metal. An experiment is performed with different values of ν and the corresponding V_S values were measured. The relation between V_S and ν is

- (A) $V_S = av$
- **(B)** Vs = av b
- **(C)** $Vs = av^2$
- **(D)** $Vs = av^2 b$

In the above equations, a and b are constants of appropriate dimensions.

Options:

8995144025.1

8995144026. 2

8995144027.3

8995144028.4

Question Number: 3 Question Id: 8995141013 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Consider a new kind of atom where the electron is in a circular orbit about a proton. If the binding energy of the n-th orbit is given by $E_n = -E_0/n$, where E_0 is a constant, the angular momentum of this orbit is given by

- (A) $n^2\hbar$
- (B) nħ
- (C) $n^{1/2}\hbar$
- **(D)** $n^{1/4}\hbar$

Options:

8995144029.1

8995144030. 2

8995144031.3

8995144032.4

Question Number: 4 Question Id: 8995141014 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

A particle is in a state described by the wavefunction

$$\psi(x) = \frac{N}{x^2 + a^2},$$

where N is the normalization constant and a is a constant with dimension of length. The uncertainty in the position coordinate of the particle is

- (A) $\frac{a}{\sqrt{2}}$
- **(B)** *a*
- (C) $a\sqrt{2}$
- **(D)** 2a

Options:

8995144033.1

8995144034. 2

8995144035.3

8995144036.4

Question Number: 5 Question Id: 8995141015 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

A particle of mass m is confined to a 1-dimensional region [0, a], whose normalized wave function is

$$\psi(x) = \sqrt{\frac{8}{5a}} \left[1 + \cos\left(\frac{\pi x}{a}\right) \right] \sin\left(\frac{\pi x}{a}\right)$$

The average energy of the particle is

- **(A)** $\frac{5\pi^2\hbar^2}{4ma^2}$
- **(B)** $\frac{6\pi^2\hbar^2}{5ma^2} \begin{bmatrix} 1 \\ SEP \end{bmatrix}$
- (C) $\frac{4\pi^2\hbar^2}{5ma^2}$
- **(D)** $\frac{5\pi^2\hbar^2}{6ma^2}$

Options:

8995144037.1

8995144038. 2

8995144039.3

8995144040.4

Question Number: 6 Question Id: 8995141016 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Consider a stream of particles of mass m, each moving in the positive x —direction with kinetic energy E towards a potential jump located at x = 0. The potential is zero for $x \le 0$ and 3E/4 for x > 0. The fraction of particles which will be reflected back at x = 0 will be

- **(A)** 1/9
- **(B)** 1/6
- (C) 1/4
- **(D)** 1/3

Options:

8995144041.1

8995144042. 2

8995144043.3

8995144044.4

Question Number: 7 Question Id: 8995141017 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

An operator \hat{A} , representing observable A, has two normalized eigenstates ψ_1 and ψ_2 , with eigenvalues a_1 and a_2 , respectively. Operator \hat{B} , representing observable B, has two normalized eigenstates ϕ_1 and ϕ_2 , with eigenvalues b_1 and b_2 , respectively. The eigenstates are related by

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5$$

After preparing the system in a general state, observable B is first measured, and the value b₁ is obtained. If A is measured immediately afterwards, the possible results for the probabilities of finding eigenvalues a₁ and a₂ are

- (A) 9/25 and 16/25
- (B) 16/25 and 9/25
- (C) 3/5 and 4/5
- (D) 4/5 and 3/5

Options:

8995144045.1

8995144046. 2

8995144047.3

8995144048.4

Question Number: 8 Question Id: 8995141018 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Consider a particle of mass m moving in a 1-dimensional potential well of width a

$$V(x) = \infty, x < 0$$

= 0, 0 \le x \le a
= V₀, x > a

The bound state energies (E<V₀) of the particle in such a potential well are given by

(A)
$$\tan\left(\frac{a\sqrt{2mE}}{\hbar}\right) = -\frac{V_0 - E}{E}$$

(B)
$$\tan\left(\frac{a\sqrt{2mE}}{\hbar}\right) = -\frac{E}{V_0 - E}$$

(C)
$$\tan\left(\frac{a\sqrt{2mE}}{\hbar}\right) = -\sqrt{\frac{V_0 - E}{E}}$$

(D)
$$\tan\left(\frac{a\sqrt{2mE}}{\hbar}\right) = -\sqrt{\frac{E}{V_0 - E}}$$

Options:

8995144049.1

8995144050.2

8995144051.3

8995144052.4

Question Number: 9 Question Id: 8995141019 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question

Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Sodium is a metal with electrical conductivity $2.17 \times 10^7 \,\Omega^{-1} \text{m}^{-1}$. If sodium is kept in a field of $200 \, V \text{m}^{-1}$, the drift velocity (in m/sec) of the electron will be (assume that only one conduction electron is available for each sodium atom) (Given, density of Sodium = 970 Kg m⁻³, atomic mass of Sodium = 23 amu, charge of electron= 1.6×10^{-19} Coulomb, Avogadro's number = 6.0×10^{23})

- (A) 1.1
- **(B)** 9.1
- (C) 50.1
- **(D)** 120.1

Options:

8995144053.1

8995144054. 2

8995144055.3

8995144056.4

Question Number: 10 Question Id: 8995141020 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

The density of copper is $8.94 \ gm \ cm^{-3}$ and its atomic weight is $63.5 \ per$ molecule, the effective mass of electron being 1.01. Assume that each atom gives one electron, calculate the average energy < E > of the free electrons at 0 0 K. The temperature (in Kelvin) required for the average kinetic energy of a gas molecules to posses this value of < E > is

- **(A)** 3.22×10^4
- **(B)** 9.22×10^4
- (C) 3.22×10^3
- **(D)** 9.22×10^3

Options:

8995144057.1

8995144058.2

8995144059.3

8995144060.4

Question Number: 11 Question Id: 8995141021 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

A 3D confinement potential V(x, y, z) is defined as follows:

$$V(x, y, z) = V(x) + V(y) + V(z)$$

where, for 0 < z < L (for all x and y)

$$V(x,y) = V(x) + V(y) = \frac{1}{2}m\omega^2(x^2 + y^2)$$
 and $V(z) = 0$

and for $z \le 0$ and $z \ge L$ (for all x and y)

$$V(x, y, z) = \infty$$

Consider $L = \pi \sqrt{\frac{\hbar}{(10m\omega)}}$. The degeneracy of the state with energy $E = 19\hbar\omega$ is

- (A) 19
- **(B)** 14
- (C) 13
- **(D)** 4

Options:

8995144061.1

8995144062. 2

8995144063.3

8995144064. 4

Question Number: 12 Question Id: 8995141022 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Assume the energy of an electron in a band of 1-dimensional solid is given by

$$E(k) = E_0 \sin^2\left(\frac{ka}{2}\right)$$

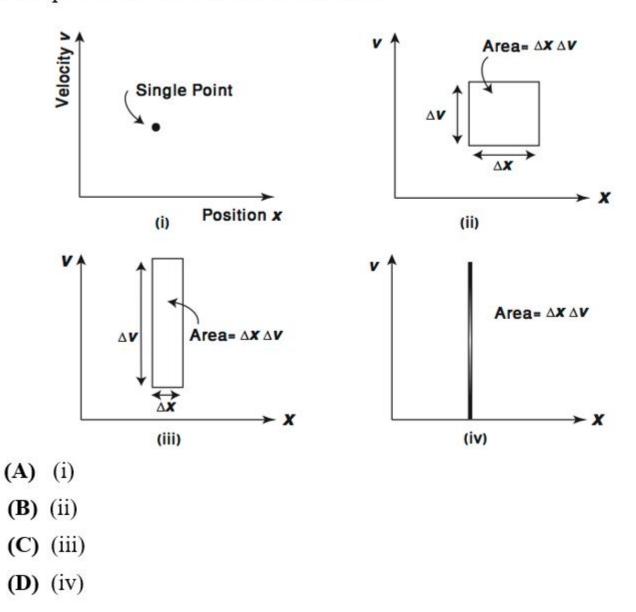
The effective mass of the electron, when $ka = \pi/3$, is

- **(A)** $\frac{\hbar^2}{a^2 E_0}$
- **(B)** $\frac{2\hbar^2}{a^2E_0}$
- (C) $\frac{3\hbar^2}{a^2E_0}$
- **(D)** $\frac{4\hbar^2}{a^2E_0}$

Options:

8995144065.1

8995144066. 2


8995144067.3

8995144068.4

Question Number: 13 Question Id: 8995141023 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is

Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

For a particle moving in 1-dimension, the phase space is a plane with position x plotted along horizontal axis and velocity v plotted along vertical axis. Four possible phase space figures are shown below. Which one of these figures does NOT represent the motion of a free electron?

Options:

8995144069. 1

8995144070.2

8995144071.3

8995144072.4

Question Number: 14 Question Id: 8995141024 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 6 Wrong Marks: 0

A one dimensional, finite potential barrier has the form

$$V(x) = 0 \quad for \quad -\infty < x < 0$$
$$= V_0 \quad for \quad 0 < x < L$$
$$= 0 \quad for \quad L < x < \infty$$

where V_0 is a positive constant. A beam of particles with kinetic energy $0 < E < V_0$ is incident on the barrier from $x = -\infty$. The probabilitity of a particle tunneling through the barrier varies with the width of the well (L) as

- (A) 1/L
- **(B)** $1/L^2$
- (C) $\exp(-\alpha L)$, where α is a constant of appropriate dimension
- **(D)** $\exp(-\beta L^2)$, where β is a constant of appropriate dimension

Options:

8995144073.1

8995144074. 2

8995144075.3

8995144076.4

Question Number: 15 Question Id: 8995141025 Question Type: MCQ Option Shuffling: No Display Question Number: Yes Is Question Mandatory: No Single Line Question Option: No Option Orientation: Vertical

Correct Marks: 6 Wrong Marks: 0

A particle of mass m is confined to a 1-dimensional region [0, L]. At time t=0, its wave function is

$$\psi(x) = N \sin^3 \left(\frac{\pi x}{L}\right)$$

where *N* is the normalization constant. The ground state energy of this particle is $E = \frac{\pi^2 \hbar^2}{2mL^2}$. The expression for the wavefunction at a later time *t* is

(A)
$$\left(\frac{N}{4}\right) \left[3\sin\left(\frac{\pi x}{L}\right) - \sin\left(\frac{3\pi x}{L}\right)e^{-i\frac{8Et}{\hbar}}\right]e^{-i\frac{Et}{\hbar}}$$

(B)
$$\left(\frac{N}{4}\right) \left[3\sin\left(\frac{\pi x}{L}\right) + \sin\left(\frac{3\pi x}{L}\right)e^{-i\frac{8Et}{\hbar}}\right]e^{-i\frac{Et}{\hbar}\left[\frac{L}{SEP}\right]}$$

(C)
$$N \left[\sin^3 \left(\frac{\pi x}{L} \right) \right] e^{-i \frac{Et}{\hbar}}$$

(D)
$$N \left[\sin^3 \left(\frac{\pi x}{L} \right) \right] e^{-i \frac{9Et}{\hbar}}$$

Options:

8995144077.1

8995144078. 2

8995144079.3

8995144080.4