

(B) \bigcirc $I_{10} \subset I_{20}$ and $c_0 \notin I_1$ (Correct Answer)

(C)
$$\bigcirc$$
 $I_{20} \subset I_{10}$ and $c_0 \not\subseteq I_1$

$$(\mathsf{D}) \bigcirc \mathsf{c}_0 \subseteq I_1$$

Let V be a finite dimensional vector space over R . A subspace W of V is said to be invariant under a linear transformation $T : V \rightarrow V$ if $T(W) \subseteq W$. Suppose W_0 is a subspace of V such that W_0 is invariant under every linear transformation from V to itself. Which of the following is true ?
(A) \bigcirc dim W ₀ = 1
(B) \bigcirc dim W ₀ = dim V - 1
(C) ○ W ₀ = (0) (Correct Answer)
(D) \bigcirc dim W ₀ cannot be determined from the given information.
Question No.6 (Question Id - 2)
The set of limit points of the set $A = \left\{ \frac{n}{4^k} : k \in \mathbf{N}, n \le 4^k \right\}$ is :
(A) O A itself
(B) ○ A ∪ {-1, 1}
$(C) \bigcirc (-1, 1)$
(D) O [-1, 1] (Correct Answer)
Question No.7 (Question Id - 9) In a class of 60 students, 55 students register for Mathematics, 47 register for Physics and 34 students register for Chemistry. The minimum number of students who must have registered for all the three subjects is :
(A) ○ 34 (B) ○ 13
(C) ⊖ 16 (Correct Answer)
(D) 〇 24
Question No.8 (Question Id - 10) Consider the following statements :
A. There are 20 primitive roots modulo 25.
B. There are 8 primitive roots modulo 25.
C. There are 16 primitive roots modulo 100.
Which of the above statements is/are correct ?
 (A) ○ A only (B) ○ B only (Correct Answer) (C) ○ A and C only (D) ○ B and C only
Question No.9 (Question Id - 5) Let F be a field having $k \ge 4$ elements. Consider the following statements :
A. F contains more than 2 roots of 1.
B. F is isomorphic to $\mathbf{Z}/p^{n}\mathbf{Z}$ for some prime number p and n $\in \mathbf{N}$.
C. F contains Z /p Z for some prime number p.
Which of the above statements is/are necessarily true ?
(A) 🔿 A and C only (Correct Answer)
(B) 🔿 All A, B and C
(C) ○ B and C only
l (n) 🔿 в ouiλ

Question No.10 (Question Id - 4) Let α , β and γ be the eigenvalues of a matrix $A \in M_3(\mathbb{R})$ such that $A^3 - A^2 + 2I = 0$. Then the value of $\alpha^2 + \beta^2 + \gamma^2$ is :		
 (A) ○ 5 (B) ○ 3 (C) ○ -5 (D) ○ 1 (Correct Answer) 		
SECTION 2 - PART II		
Question No.1 (Question Id - 12)The set $\{z \in C : e^{z} = z \}$ is :(A) \bigcirc empty(B) \bigcirc a non-empty finite set(C) \bigcirc a countably infinite set(D) \bigcirc an uncountable set (Correct Answer)		
Question No.2 (Question Id - 14)Consider sets and operations : $G_1 = \{f : \mathbb{R} \to \mathbb{R} f \text{ is continuous}\}$ with respect to composition of maps and pointwise multiplication. $G_2 = \{f : \mathbb{R} \to \mathbb{R} f \text{ is continuous}\}$ with respect to pointwise addition and multiplication. $G_3 = \{f : \mathbb{R}^2 \to \mathbb{R}^2 f \text{ is a linear projection onto a one-dimensional subspace of } \mathbb{R}^2\}$ with respect to addition and composition. $G_4 = \{f : \mathbb{R}^2 \to \mathbb{R}^2 f \text{ is linear}\}$ with respect to addition and composition.Which of the above is/are commutative ring(s) with unity ?		
$ \begin{array}{l} (A) \bigcirc \ G_3 \ \text{only} \\ (B) \bigcirc \ G_2 \ \text{and} \ G_4 \ \text{only} \\ (C) \bigcirc \ G_1, \ G_2 \ \text{and} \ G_4 \ \text{only} \\ (D) \bigcirc \ \ \textbf{G_2 \ only (Correct \ Answer)} \end{array} $		
Question No.3 (Question Id - 24) What is the remainder when 28! is divided by 31 ? (A) ○ 16 (B) ○ 15 (Correct Answer) (C) ○ 30 (D) ○ 1		
Question No.4 (Question Id - 22) Let (X, \cdot) be a Banach space and $T : X \to X$ be a linear map. Define $ \cdot _T : X \to [0, \infty)$ by $ x _T = T(x) $ for $x \in X$. Consider the following assertions :		
A. $\ \cdot\ _{T}$ is a norm on X if and only if T is surjective.		
B. $\ \cdot\ _T$ is a norm on X if and only if T is injective.		
C. $\ \cdot\ _T$ is a norm on X if and only if T is continuous.		
D. $(X, \cdot _T)$ is Banach space if T is bijective.		
Which of the above assertions is/are always true ?		
 (A) ○ A and D only (B) ○ B and C only (C) ○ B only (D) ○ B and D only (Correct Answer) 		

Let Cor	Jestion No.5 (Question Id - 20) X = Z and τ be the smallest topology on X containing all sets of the form {n, n + 3} for all n ε Z . nsider the following assertions :
A. 1	r is same as the smallest topology on X containing all sets of the form {n, n + 1} for all n ϵ Z .
В. 1	r is same as the smallest topology on X containing all sets of the form {n, n + 2} for all n ϵ Z .
C. 1	r is same as the smallest topology on X containing all sets of the form {n, n + 1, n + 2} for all n ϵ Z .
D. 1	τ is a countable collection.
Whi	ch of the above assertions is/are correct ?
(A) (B) (C) (D)	 C only A and D only A, B and C only (Correct Answer) A, B and D only
Qι For X ₃ =	Jestion No.6 (Question Id - 23) any fixed n \in N , the number of ordered triplets (X ₁ , X ₂ , X ₃) of subsets of N such that X ₁ \cup X ₂ \cup = {1, 2,, n} is equal to :
(A)	○ 7 ⁿ (Correct Answer)
(B)	⊖ 8 ⁿ
(C)	○ n ⁸
(D)	○ n ³
Qu The (A) (B) (C) (D)	<pre>set {z ∈ C : e^z = z} is : empty a non-empty finite set a countably infinite set (Correct Answer) an uncountable set</pre>
Qı Let	uestion No.8 (Question Id - 18) S = {A \in M ₂ (R) A ² = I}. Which of the following assertions is true ?
(A)	○ S is not a group. (Correct Answer)
(B)	 S is a finite abelian group. S is an infinite abelian group.
(C) (D)	 S is an infinite non-abelian group.
Qı	uestion No.9 (Question Id - 13)
Let	m denote the Lebesgue measure on R . Consider the following assertions :
A. I	f U is an open set in R containing Q , then m(U) = ∞ .
В. Т	There exists an open set U in R containing Q with m(U) < $\frac{1}{2020}$.
C. 1	f U is an open set in R containing Q with m(U) = ∞ , then m(R \U) = 0.
D. I	f G is a closed set in R containing Q , then m(G) = ∞ .
Whi	ch of the above assertions are always true ?
(A) (B)	 B and D only (Correct Answer) A, C and D only

(C) \bigcirc A and D only

(D) O B, C and D only

Question No.10 (Question Id - 21)

Let $\{A_n : n \in N\}$ be a countable collection of non-empty subsets of \mathbb{R}^2 such that $A_{n+1} \subseteq A_n$ for all $n \in \mathbb{N}$. Consider the following assertions :

A. If A_n is connected for every $n \in \mathbf{N}$, then $\bigcap_n A_n$ is connected.

- B. If A_n is compact for every $n \in \mathbf{N}$, then $\bigcap_n A_n$ is compact.
- C. If A_n is uncountable for every $n \in \mathbf{N}$, then $\bigcap_n A_n$ is uncountable.
- D. If A_n is countable for every $n \in \mathbf{N}$, then $\bigcap_n A_n$ is non-empty.

Which of the above assertions is/are always true ?

(A) O B only (Correct Answer)

- (B) O A and D only
- (C) \bigcirc C and D only
- $(D) \bigcirc$ A and B only

Question No.11 (Question Id - 11)

Let
$$S_1$$
 and S_2 be the series $S_1 = \sum_{n=1}^{\infty} \frac{1}{2^{\log n}}$ and $S_2 = \sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{\sqrt{n}}$

- (A) \bigcirc S₁ and S₂ both converge.
- (B) \bigcirc S₁ diverges and S₂ converges. (Correct Answer)
- (C) \bigcirc S₁ converges and S₂ diverges.
- (D) \bigcirc S₁ and S₂ both diverge.

Question No.12 (Question Id - 16)

Let V be a finite-dimensional vector space over **R**. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V and let $\{w_1, w_2, \ldots, w_n\} \subset V$. Consider the following statements :

A. There exists a unique linear map T : V \rightarrow V such that T(v_i) = w_i for 1 ≤ i ≤ n.

B. If there exists a linear map T : V \rightarrow V such that T(v_i) = w_i for 1 ≤ i ≤ n, then T is injective.

C. If there exists an injective linear map T : V \rightarrow V such that T(v_i) = w_i for 1 ≤ i ≤ n, then {w₁, w₂, . . ., w_n} is a basis for V.

D. There exists a unique linear map $T : V \rightarrow V$ such that $T(w_i) = v_i$ for $1 \le i \le n$.

Which of the above statements are correct ?

- (A) \bigcirc A and D only
- (B) \bigcirc A, B and C only
- (C) \bigcirc A and C only (Correct Answer)
- (D) \bigcirc A, B and D only

Question No.13 (Question Id - 15)

Let V, W and Z be finite-dimensional vector spaces over **R**. Let T : W \rightarrow Z and S : V \rightarrow W be linear maps. Consider the following statements :

A. If T.S is invertible then so are T and S.

B. If S and T are both injective then dim Z \leq dim V .

C. If dim W > dim V , then T • S cannot be surjective.

D. If dim W < dim Z, then T.S cannot be surjective.

Which of the above statements is/are always true ?

(A) \bigcirc D only (Correct Answer)

- (B) O A and C only
- $(C) \bigcirc B$ and D only
- (D) O B only

Question No.14 (Question Id - 17)

Consider the following statements :

A. There exists a finitely generated group containing some element of infinite order.

B. There exists an infinite group which is not finitely generated but all whose elements have finite order.

C. There exists a finitely generated infinite group no element of which has infinite order.

Which of the above statements are correct ?

(A) O All A, B and C (Correct Answer)

- (B) O B and C only
- (C) \bigcirc A and C only
- (D) \bigcirc A and B only

Save & Print