Save & Print
Roll No:
Application No:
Name:
Exam Date: 07-Oct-2020 Exam Time: 09:00-12:00
Exam time: 09:00-12:00 Examination: 1. Course Code - Ph.D.
2. Field of Study - Chemical Science (CHEH)
SECTION 1 - PART A
Question No.1 (Question Id - 12)
A solution with concentration 0.002 M, having molar absorptivity of 313 M ⁻¹ cm ⁻¹ kept in a cell with 4.00 cm path length. The transmittance for the solution will be :
(A) ○ 2.50
(B) O 10-2.50
(Correct Answer)
$(C) \bigcirc 10^{2.50}$
(D) \(\tau_{10}^{1.50} \)
(E) ○ ₁₀ -1.50
Question No.2 (Question Id - 2)
The solubility product (K_{sp}) of mercurous chloride (Hg_2Cl_2) is 1.2 x 10^{-18} . The concentration of
[Hg ₂] ²⁺ and [Cl ⁻] is found to be respectively :
(A) ○ 6.7 x 10 ⁻⁷ M and 13.4 x 10 ⁻⁷ M (Correct Answer)
(B) ○ 13.4 x 10 ⁻⁷ M and 6.7 x 10 ⁻⁷ M
(C) ○ 6.7 x 10 ⁻⁹ M and 13.4 x 10 ⁻⁹ M
(D) ○ 13.4 x 10 ⁻⁹ M and 6.7 x 10 ⁻⁹ M
(E) ○ 1.2 x 10 ⁻⁷ M and 2.4 x 10 ⁻⁷ M
Question No.3 (Question Id - 3) The following statement is correct concerning the IR spectrum of nitrite and isocyanate groups:
(A) ○ The - C ≡ N and - NCO groups absorb in the region of 2260 - 2240 cm ⁻¹ and 2275 - 2240 cm ⁻¹ , respectively. (Correct Answer)
(B) \bigcirc The C = N and NCO groups absorb in the region of 2500, 2550 cm ⁻¹ and 2275, 2240

- (B) The C ≡ N and NCO groups absorb in the region of 2590 2550 cm⁻¹ and 2275 2240 cm⁻¹, respectively.
- (C) \bigcirc The C \equiv N and NCO groups absorb in the region of 1690 1590 cm⁻¹ and 2260 2240 cm⁻¹, respectively.
- (D) \bigcirc The C \equiv N and NCO groups absorb in the region of 2275 2240 cm⁻¹ and 2590 2550 cm⁻¹,respectively.
- (E) The C ≡ N and NCO groups absorb in the region of 1690 1590 cm⁻¹ and 2260 2360 cm⁻¹,respectively.

Question No.4 (Question Id - 6)

In the mass spectrum of trifluoroacetic acid, CF_3CO_2H , intense peaks are observed at m/z = 69 and 45 (base peak) in addition of other peaks. The peak at m/z = 69 is accompanied by a peak at m/z = 70 which is about 1.1% the intensity of the peak at m/z = 69. Which statement is inconsistent with these data?

- (A) O C C bond cleavage occurs
- (B) O Fluorine is monotopic
- $(C) \bigcirc [CO_2H]^+$ is a fragment
- (D) CF₃CO₂H fragments by sequential loss of F atoms (Correct Answer)
- (E) [CF₃]⁺ is a fragment

Question No.5 (Question Id - 11)

With increase in temperature the viscosities of gases and liquids respectively.

- (A) O increase, decrease (Correct Answer)
- (B) O decrease, increase

(C) ○ decrease, decrease (D) ○ increase, increase (E) ○ unaffected by temperature
Question No.6 (Question Id - 10) Mixture containing A, B and C was injected into a gas chromatograph. "A" gave a sharp peak in 40 seconds, "B" and "C" gave peaks at 250 and 330 seconds respectively. The adjusted retention time are:
(A) ○ 290 s and 370 s (B) ○ 290 s and 210 s (C) ○ 370 s and 290 s (D) ○ 210 s and 290 s (Correct Answer) (E) ○ 80 s and 40 s
Question No.7 (Question Id - 4) The ¹ H NMR spectrum of a compound 'A' shows a doublet and a septet. Which of the following statements is true ?
(A) O The spectroscopic data are consistent with 'A' containing a n-propyl group.
 (B) ○ The spectroscopic data are consistent with 'A' being (CH₃)₂CHCI. (Correct Answer) (C) ○ The spectroscopic data are consistent with 'A' containing CH₃CH₂ group.
 (D) ○ The spectroscopic data are consistent with 'A' being (CH₃)₂CCl₂. (E) ○ The spectroscopic data are consistent with 'A' containing (CH₃)₃C group.
Question No.8 (Question Id - 8) What will be the decreasing order of absorption of wavelength of light in the visible region for the following complexes?
A. [Co(NH ₃) ₆] ³⁺
B. [Co(H ₂ O) ₆] ³⁺
C. [Co(CN) ₆] ³⁻
Choose the correct answer from the options given below
(A) ○ A > B > C (B) ○ C > A > B (C) ○ B > C > A (D) ○ A > C > B (E) ○ B > A > C (Correct Answer)
Question No.9 (Question Id - 5) A 0.2 M solution of an optically active compound. 'C' has an observed rotation in a 10 cm cell of (+) 0.6°. The specific rotation of the compound is 20° at room temperature and at 592 nm. The molecular weight of the compound 'C' is:
(A) ○ 150 (Correct Answer) (B) ○ 200 (C) ○ 120 (D) ○ 240 (E) ○ 160
Question No.10 (Question Id - 14) The lead (Pb) content in the replicate determination of a blood sample was found to be 0.750, 0.754, 0.750 ppm. The standard deviation will be :
(A) ○ 0.023 (B) ○ 0.0023 (Correct Answer) (C) ○ 0.00023 (D) ○ 0.0032 (E) ○ 0.032

Question No.11 (Question Id - 13) In an experiment, absorbance measurements were recorded as 0.588, 0.580, 0.586, 0.573, 0.575. The random error for the third result will be:
(A) O -0.5809
(B) O.5809
(C) ○ -0.0056
(D)
(E) ○ 0.001
Question No.12 (Question Id - 9) A mineral absorbs ultraviolet light and then emits a photon of wavelength 540 nm after converting some of absorbed light energy to heat. The energy of emission is:
(A) ○ 3.68 x 10 ⁻¹⁹ J (Correct Answer)
(B) \bigcirc 1.84 x 10 ⁻¹⁹ J
(C) \bigcirc 7.36 x 10 ⁻¹⁹ J
(D) ○ 5.40 x 10 ⁻¹⁹ J
(E) ○ 2.70 x 10 ⁻¹⁹ J
Question No.13 (Question Id - 1)
In the extraction of a solution of 5.0 gms of butanoic acid in 100 ml of water at 15°C, 100 ml of benzene at 15°C is used. Partition coefficient (K) of butanoic acid between water and benzene is $\frac{1}{3}$ at 15°C. A single extraction with benzene, w (gms) remain in the aqueous layer. w in gms should be:
(A) (A) (D) 1.0 gm
(B) ○ 2.0 gms
(C) ○ 1.25 gms (Correct Answer) (D) ○ 0.5 gm
(E) ○ 3.0 gms
Question No.14 (Question Id - 7) When a mixture of NaCl, Conc. H_2SO_4 , and $K_2Cr_2O_7$ is heated in a dry test tube, deep red vapour of A evolved. This vapour (A) dissolved in aqueous NaOH gave a yellow solution, which upon treatment with $AgNO_3$ formed a brick-red precipitate (B). A and B are, respectively:
(A) \bigcirc CrO ₂ Cl ₂ and Ag ₂ Cr ₂ O ₇
(B) ○ CrO ₂ Cl ₂ and Ag ₂ CrO ₄ (Correct Answer)
(C) \bigcirc Na ₂ [CrOCl ₅] and Ag ₂ Cr ₂ O ₇
(D) O Na ₂ [CrOCl ₅] and Ag ₂ CrO ₄
(E) CrOCl and AgCrO ₄
Question No.15 (Question Id - 15) For the systematic error, which statement among the following is not correct?
(A) O It is determinate error
(B) O It is indeterminate error (Correct Answer)
(C) ○ It is reproducible(D) ○ It arises due to uncalibration
(E) It arises due to chemical contamination
SECTION 2 - PART B
Question No.1 (Question Id - 41)
The point group of H ₂ O ₂ , if it is in trans form :
$(A) \bigcirc C_{20}$

(B) D_{2h}

(C) C_{2h} (Correct Answer)

(D) O D_{2d}

(E) O C₂

Question No.2 (Question Id - 27)

Predict the correct structures [A] and [B], and the correct statement for the following reaction:

$$\begin{array}{c}
& \xrightarrow{\text{EtO}_2\text{C}} \xrightarrow{\bigoplus_{N=N}} & \bigoplus_{[\Lambda]} & \longrightarrow [B]
\end{array}$$

The reaction goes via a radical intermediate.

The reaction goes through a carbene intermediate and an electrocyclic ring opening.

(C)
$$\bigcirc$$
 [A] : $\overset{\cdots}{\bigcirc}$ CO_2Et ; [B] :

The reaction goes through a carbene intermediate.

(D)
$$\bigcirc$$
 [A] : $\overset{H}{\bigcirc}$ $\overset{H}{\bigcirc}$ $\overset{H}{\bigcirc}$ $\overset{H}{\bigcirc}$ $\overset{H}{\bigcirc}$ $\overset{H}{\bigcirc}$ $\overset{H}{\bigcirc}$

The reaction goes through a radical mechanism.

The reaction goes through a carbene intermediate and an electrocyclic ring opening.

(Correct Answer)

Question No.3 (Question Id - 16)

In the reduction of aromatic rings with metal, the substituents influence the regionelectivity of the reaction. The major product formed in the following reaction is :

OMe
$$\frac{\text{Na, NH}_3(l)}{\text{Et}_2\text{O, EtOH}} \quad [A]$$

(D) O

Question No.4 (Question Id - 22)

A secondary alcohol is reacted with an aromatic acid in the presence of PPh₃ and DEAD. The following products are formed. Choose the correct products [A], [B] and [C].

$$R \xrightarrow{\text{OH}} + \text{Ph COOH} \xrightarrow{\text{Ph}_3P} [A] + [B] + [C]$$

$$DEAD: \text{ EtO } \bigvee_{\text{O}} N \bigotimes_{\text{N}} \bigvee_{\text{OEt}}$$

(A)
$$\bigcirc$$

$$[A]: \underset{Ph}{\bigvee} \circ \bigvee_{Ph} ; [B]: \underset{EtO_2C}{\bigvee} \bigvee_{N} \circ \bigvee_{CO_2Et};$$

(B)
$$\bigcirc$$

$$[C]: H_2O$$

$$[A]: \xrightarrow{Ph}; [B]: \xrightarrow{N} \bigcirc CO_2Et;$$

$$[C]: H_2O$$

$$(C) \bigcirc$$

$$[C]: H_2O$$

$$[C]: H_2O$$

$$[C]: H_2O$$

$$[C]: H_2O$$

$$[C]: H_2O$$

$$(\mathsf{D}) \bigcirc \\ [\mathsf{A}]:_{\mathsf{R}} \underbrace{ \\ \circ \\ \circ \\ \mathsf{Ph}} ; [\mathsf{B}]: \underbrace{ \\ \mathsf{EtO}_2\mathsf{C}}_{\mathsf{H}} \underbrace{ \\ \mathsf{N} \\ \mathsf{N} \\ \mathsf{N} \\ \mathsf{CO}_2\mathsf{Et}};$$

Question No.5 (Question Id - 25)

The following reaction steps are carried out to prepare a synthetic analogue of uracil. The products formed [A] and [B] are :

Me OH
$$MsCl$$
 [A] DBU [B]

(C) O

Question No.6 (Question Id - 49)

For an hexagonal crystal system.

- (A) \bigcirc a = b = c; α = β = γ = 90°
- (B) \bigcirc a = b \neq c; α = β = 90° γ = 120° (Correct Answer)
- (C) \bigcirc a = b = c; α = β = 90° γ = 120°
- (D) \bigcirc a = b \neq c; α = β = γ = 90°
- (E) \bigcirc a \neq b \neq c; $\alpha = \gamma = 90^{\circ} \neq \beta$

Question No.7 (Question Id - 38)

Release of O_2 from oxyhemoglobin is favoured by :

- (A) \bigcirc High pH, low conc. of CO_2 and high temperature
- (B) \bigcirc High pH, low conc. of CO₂ and low temperature
- (C) \bigcirc Low pH, low conc. of CO_2 and high temperature
- (D) \bigcirc High pH, high conc. of CO_2 and low temperature
- (E) Low pH, high conc. of CO₂ and high temperature (Correct Answer)

Question No.8 (Question Id - 40)

An excited atom has a mean life of 10^{-8} s and radiates a photon while coming down to the ground state. The inherent uncertainty in the frequency is [h = 6.626×10^{-34} ; Js]

- (A) \bigcirc 1.054 x 10⁺³⁴ Hz
- (B) O 8 x 10⁻⁸ Hz
- (C) 8 x 10⁶ Hz (Correct Answer)
- (D) \bigcirc 8 x 10⁻⁶ Hz
- (E) 1.054 x 10⁶ Hz

Question No.9 (Question Id - 43)

The first line in the rotational spectrum of carbonmonoxide appears at frequency 3.8424 cm⁻¹. The C - O bond length will be :

[N_A = 6.022 x 10²³/mol ; C = 3 x 10⁸ m/s)

- (A) O 1.9 Å
- (B) O 1.4 Å
- (C) 0.90 Å
- (D) O 1.13 Å (Correct Answer)
- (E) 0 1.23 Å

Question No.10 (Question Id - 33)

The CORRECT trend in ligand-to-metal charge transfer (LMCT) energies of the following metal tetraoxidoanions:

- (A) \bigcirc $VO_4^{3-} > CrO_4^{2-} > MnO_4^-$ and $ReO_4^- > TcO_4^- > MnO_4^-$ (Correct Answer)
- (B) \bigcirc MnO₄ > CrO₄² > VO₄³⁻ and MnO₄ > TcO₄ > ReO₄
- (C) \bigcirc $VO_4^{3-} > MnO_4^{-} > CrO_4^{2-}$ and $ReO_4^{-} > MnO_4^{-} > TrO_4^{-}$
- (D) \bigcirc MnO₄⁻ > VO₄³⁻ > CrO₄²⁻ and MnO₄⁻ > ReO₄⁻ > TcO₄⁻
- (E) \bigcirc $CrO_4^{2-} > MnO_4^{-} > VO_4^{3-}$ and $TcO_4^{-} > ReO_4^{-} > MnO_4^{-}$

Question No.11 (Question Id - 46)

For the reaction, Ag + Fe(ClO₄)₃ \Rightarrow AgClO₄ + Fe(ClO₄)₂, the equilibrium constant at 25°C is 0.60.

The standard e.m.f. of a corresponding cell, Ag $|Ag^+|$ $|Fe^{++}|$ $|Fe^{+++}|$ will be : |F| = 96500 C mol⁻¹;

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$ (A) \bigcirc -1.1 x 10⁻³ volt (B) \bigcirc -11 x 10⁻³ volt (C) O -0.13 volt (D) O -0.013 volt (Correct Answer) (E) \bigcirc -0.013 x 10⁻³ volt Question No.12 (Question Id - 30) The Latimer diagram of chlorine in acidic solution is given below: $CIO_4^- \xrightarrow{+1.20 \text{ V}} CIO_3^- \xrightarrow{+1.18 \text{ V}}$ $HCIO_2 \xrightarrow{+1.65 \text{ V}} HCIO \xrightarrow{+1.67 \text{ V}}$ $Cl_2 \xrightarrow{+1.36 \text{ V}} Cl^-$ Calculate the E⁰ for the couple HClO₂ to Cl₂ in acidic medium. (A) (+3.32 V (B) (B) +1.11 V (C) - +2.48 V

(D) \cap +1.66 V (Correct Answer) (E) (+4.97 V

Question No.13 (Question Id - 47)

In a second order reaction of the type A + B \rightarrow P, initially the concentrations of reactants were [A]₀ = 0.10 mol dm⁻³ and [B]₀ = 0.075 mol dm⁻³. After 1 hr the concentration of B fell to [B] = 0.04 mol dm⁻³. The rate constant k of the reaction will be:

(A) \bigcirc 2.20 x 10⁻² dm³ mol⁻¹ s⁻¹ (B) \bigcirc 1.20 x 10⁻³ dm³ mol⁻¹ s⁻¹ (C) ○ 2.20 x 10⁻³ dm³ mol⁻¹ s⁻¹ (Correct Answer) (D) \bigcirc 2.20 x 10⁻³ dm³ mol⁻¹ (E) \bigcirc 1.20 x 10⁻² dm³ mol⁻¹ s⁻¹

Question No.14 (Question Id - 39)

An electron is confined to an one-dimension box of length 1Å. The ground state energy will be : [h = $6.626 \times 10^{-34} \text{ Js; m} = 9.11 \times 10^{-31} \text{kg}$

(A) \bigcirc 6.024 x 10¹⁸ J (B) ○ 6.024 x 10⁻¹⁸ J (Correct Answer) (C) O 6.024 x 10¹⁸ k.cal (D) O 6.024 x 10⁻¹⁸ k.cal (E) ○ 43.904 x 10⁺¹⁷ k.cal

Question No.15 (Question Id - 34)

The ground terms for Cr²⁺, Cr³⁺ and Fe²⁺ are:

(A) O ⁵D, ⁴F and ⁵D (Correct Answer) (B) \bigcirc ⁴F, ⁵D and ⁵D (C) \bigcirc ³F, ⁵D and ⁵D (D) \bigcirc ³F, ⁶S and ⁵D (E) \bigcirc ³F, ⁴F and ⁵D

Question No.16 (Question Id - 19)

(S)–2–Phenylbutanal is reacted with Grignard reagent, methyl magnesium iodide. The absolute configuration of the chiral carbons in the product of the above reaction is :

(A) O 1 S, 3 S (B) O 1 R, 2 R (C) O 1S, 2R

(E) O 1R, 2S

Question No.17 (Question Id - 26)

The type of above pericyclic reaction, number of electrons involved in the reaction and the path(mode) followed by the reactions are:

- (A) \bigcirc electrocyclic ring opening; $4\pi e$; conrotatory. (Correct Answer)
- (B) \bigcirc electrocyclic ring opening; $2\pi e$; disrotatory.
- (C) \bigcirc .cycloaddition, $6\pi e$, disrotatory
- (D) \bigcirc .sigmatropic, $2\pi e$, (antara, antara)
- (E) \bigcirc .sigmatropic, $4\pi e$, (supra, supra)

Question No.18 (Question Id - 48)

The characteristic conditions of the Langmuir isotherm are :

- A. Adsorption cannot proceed beyond monolayer coverage
- B. All sites are equivalent and the surface is uniform
- C. Adsorption can proceed beyond monolayer coverage
- D. All sites are non-equivalent

The correct option would be:

- (A) O A and C
- (B) O A and B (Correct Answer)
- (C) Only A
- (D) Only B
- (E) O A, B and C

Question No.19 (Question Id - 21)

In the following reaction, predict the correct structures and identify the right statement:

$$\begin{array}{c}
OH \\
OH
\end{array}$$

$$\begin{array}{c}
TsCl, Py \\
A\end{bmatrix} \xrightarrow{CaCO_3} [B]$$

$$(A)\bigcirc \\ [A]: \bigcirc OH \\ OTs \quad [B]: \bigcirc OH \\ COO\Theta$$

The carboxylate group is nucleophilically substituted.

(B)
$$\bigcirc$$
 OH \bigcirc [B] : \bigcirc O (Correct Answer) This is an example of a semipinacol rearrangement.

Selective tosylation of secondary alcohol and epoxide formation.

Tosylation with epoxide formation.

This is a Pinacol rearrangement.

Question No.20 (Question Id - 32)

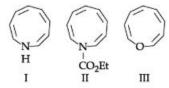
Pick the correct answer from the following A straight chain silicone polymer is formed by :

- (A) \bigcirc Hydrolysis of CH₃SiCl₃ followed by condensation polymerization.
- (B) Hydrolysis of (CH₃)₂ SiCl₂ followed by condensation polymerization. (Correct Answer)
- (C) \bigcirc .Hydrolysis of (CH₃)₃ SiCl followed by condensation polymerization.
- (D) \bigcirc Hydrolysis of (CH₃)₄ Si followed by addition polymerization.
- (E) O Hydrolysis of tetra ethyl ortho silicate followed by condensation polymerization.

Question No.21 (Question Id - 29)

Choose the CORRECT order of solubility of the following compounds in water in each set.

- I. LiF, LiCI, LiBr
- II. Ag₂O, Ag₂S, AgCl
- (A) \bigcirc LiBr > LiCl > LiF and AgCl > Ag₂S > Ag₂O
- (B) \bigcirc LiF > LiCl > LiBr and Ag₂O > Ag₂S > AgCl
- (C) \bigcirc LiBr > LiCl > LiF and Ag₂O > AgCl > Ag₂S (Correct Answer)
- (D) \bigcirc LiF > LiCl > LiBr and Ag₂S > Ag₂O > AgCl
- (E) \bigcirc LiF > LiCl > LiBr and AgCl > Ag₂O > Ag₂S


Question No.22 (Question Id - 44)

The difference in chemical potential between two regions of a system is +9.1 kJ mol⁻¹. By how much does the Gibbs energy change when 0.10 mmol of a substance is transferred from one region to the other?

- (A) \bigcirc 1.9 x 10⁻³ kJ
- (B) 91.0 x 10⁻³ kJ
- (C) O 19 x 10⁻³ kJ
- (D) \bigcirc 9.1 x 10⁻³ kJ
- (E) 0.91 x 10⁻³ kJ (Correct Answer)

Question No.23 (Question Id - 17)

Predict the aromaticity, antiaromaticity or nonaromaticity in the following structures:

- (A) \(\text{ I : Antiaromatic ; II : Aromatic ; III : Aromatic
- (B) O I: Aromatic; II: Aromatic; III: Aromatic
- (C) \bigcirc I : Nonaromatic ; II : Nonaromatic ; III : Nonaromatic
- (D) O I : Aromatic ; II : Nonaromatic ; III : Nonaromatic (Correct Answer)
- (E) O I: Antiaromatic; II: Antiaromatic; III: Antiaromatic

Question No.24 (Question Id - 45)

A sample consisting of 1.00 mol of perfect gas is expanded isothermally and reversibly at 20° C from 5 dm^3 . The q of the process is :

 $[R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}]$

- (A) O +0.982 kJ
- (B) O -0.982 kJ
- (C) O -26.8 kJ
- (D) O -2.68 kJ
- (E) +2.68 kJ (Correct Answer)

Question No.25 (Question Id - 23)

MeO
$$N$$
 NH_2 H_2SO_4 P (major product)

The structure of the product, P of above reaction and the type of reaction are:

(A)
$$\bigcirc$$
 NO₂ nucleophilic substitution

$$(E) \bigcirc O_2N \\ \\ O_3N \\ \\ O_3N$$

Question No.26 (Question Id - 31)

Out of the following reactions, which one will yield metal nitride?

- (A) NH₄CI + NaNH₂
- (B) NH₃(aq) + NaOCl
- (C) \bigcirc Ca(s) + NH₃(I) (Correct Answer)
- (D) \bigcirc NaNH₂ + NaNO₃ at elevated temperatures
- (E) \bigcirc NaNH₂ + N₂O at elevated temperatures

Question No.27 (Question Id - 36)

Arrange the following in the decreasing order of Rh-C bond lengths.

- A. Rh (CO) (CI) (PPh₃)₂
- B. Rh (CO) (CI) (PEt₃)₂
- C. Rh (CO) (CI) $[P(C_6F_5)_3]_2$
- D. Rh (CO) (CI) (PMePh₂)₂

Choose the correct answer from the options given below

- (A) O B > D > A > C
- (B) \bigcirc A > D > B > C
- $(C) \bigcirc D > A > B > C$
- (D) O C > B > A > D
- (E) \bigcirc C > A > D > B (Correct Answer)

Question No.28 (Question Id - 42)

Asymmetric top molecule among the following:

- (A) O CH₂CHCI (Correct Answer)
- (B) BCl₃
- (C) CH₃CI
- (D) OCS
- (E) CCI₄

Question No.29 (Question Id - 20)

$$\begin{array}{c|c} \text{(i)} \ H_2-Pt \\ \text{(ii)} \ CrO_3 \\ \hline \text{(iii)} \ H_2-Pt \\ \text{(iv)} \ H_3O^+ \end{array} \begin{array}{c} Y \\ \text{(major product)} \end{array}$$

The structure of the major product, Y is:

H

Question No.30 (Question Id - 28)

Considering the halides and oxides of elements from the periodic table, which statement is correct from the following:

- (A) O Metals form basic oxides and high oxidation state halides of transition metals tend to be
- (B) O Metals form basic oxides and low oxidation state halides of transition metals tend to be ionic. (Correct Answer)
- (C) \bigcirc Non-metals form acidic oxides and p-block halides are predominantly ionic.
- (D) O Non-metals form basic oxides and p-block halides are predominantly covalent.
- (E) O Metals form acidic oxides and s-block oxides are predominantly ionic.

Question No.31 (Question Id - 18)

Elucidate the plausible molecular structure of a compound with molecular formula C7H12O4, using following spectroscopic data:

IR (cm⁻¹): 2990 - 2880, 1735, 1150, 1035.

'H NMR : δ 1.28 (6 H, triplet)

δ 3.23 (4 H, quartet)

δ 4.16 (2 H, singlet)

Mass spectrum:

m/z: 161, 160, 133, 115, 43, 29

(D) (

(E)
$$\bigcirc$$

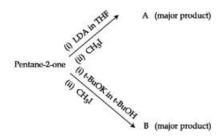
$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$


$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}CH_{3}$$

$$CH_{2}CH_{2}CH_{3}$$

$$CH_{2}CH_{2}CH_{3}$$

Question No.32 (Question Id - 24)

The structures of A and B are respectively.

Question No.33 (Question Id - 50)

The fraction condensed (p) of a polymer by stepwise process with degree of polymerization < N > = 251 would be :

- (A) O 9.96
- (B) O.996 (Correct Answer)
- (C) 0 1.96
- (D) O 2.0
- (E) 0.0996

Question No.34 (Question Id - 37)

The bond order of the metal-metal bonds in $[Re_2Cl_4(P(C_2H_5)_3)_4]$, $[Re_2Cl_4(P(C_2H_5)_2 Ph)_4]^{\oplus}$ and $[Re_2Cl_4(P(C_2H_5)Ph_2)_4]^{2+}$, respectively.

- (A) O 4.0, 3.5 and 3.0
- (B) O 3.5, 3.0 and 4.0
- (C) \bigcirc 4.0, 3.0 and 3.5
- (D) O 3.0, 3.5 and 4.0 (Correct Answer)
- (E) 3.0, 4.0 and 3.5

Question No.35 (Question Id - 35)

Among the following statements, which one characterizes the electronic absorption spectra of lanthanoid ions :

- (A) O Sharp absorptions due to the strong interaction of the f-orbitals with the ligand vibration.
- (B) O Spectra that are independent of the ligand type and coordination number. (Correct Answer)
- (C) O Molar absorption coefficients are comparable with d-block elements.
- (D) O Numerous absorptions due to orbital mixing.
- (E) \bigcirc Numerous absorptions due to the capability to show higher coordination number.

Save & Print