National Testing Agency

Question Paper Name: Applied Multivariate Analysis 25th March 2021

Shift 2

Subject Name: Applied Multivariate Analysis

Creation Date : 2021-03-25 22:30:46

Duration:180Number of Questions:37Total Marks:100Display Marks:Yes

Applied Multivariate Analysis

Group Number:

Group Id: 512452129

Group Maximum Duration:

Group Minimum Duration:

Show Attended Group?:

No
Edit Attended Group?:

No
Break time:

Group Marks:

100
Is this Group for Examiner?:

No

Applied Multivariate Analysis-1

Section Id: 512452761

Section Number: 1

Section type:Online **Mandatory or Optional:**Mandatory

Number of Questions :20Number of Questions to be attempted :20Section Marks :20Mark As Answered Required? :YesSub-Section Number :1

Sub-Section Id: 512452763

Question Shuffling Allowed: Yes

Question Number: 1 Question Id: 51245211479 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

In the Single Linkage method, the distance between two clusters is defined as

- 1. the distance between the closest two members of the two clusters
- 2. the distance between the farthest two members of the two clusters
- 3. the distance between the centroids of the two clusters
- 4. the average distance between two members of the two clusters

Options:

- 51245234501.1
- 51245234502.2
- 51245234503.3
- 51245234504.4

Question Number : 2 Question Id : 51245211480 Question Type : MCQ Option Shuffling : No Is Question Mandatory : No

Correct Marks: 1 Wrong Marks: 0

In a 2 \times 2 table with a Yes-Yes, b Yes-No, c No-Yes and d No-No, the matching proportions similarity measure is given by

- 1. (a+c)/(a+b+c+d)
- 2. (a+b)/(a+b+c+d)
- 3. (a+d)/(a+b+c+d)
- 4. (b+c)/(a+b+c+d)

Options:

- 51245234505.1
- 51245234506.2
- 51245234507.3
- 51245234508.4

Question Number : 3 Question Id : 51245211481 Question Type : MCQ Option Shuffling : No Is Question Mandatory : No

Correct Marks: 1 Wrong Marks: 0

The discriminating function for two groups with underlying multivariate normal densities is linear if

- 1. their means are equal
- 2. their dispersion matrices are equal
- 3. their means are unequal
- 4. their dispersion matrices are unequal

Options:

- 51245234509.1
- 51245234510.2
- 51245234511.3
- 51245234512.4

Question Number : 4 Question Id : 51245211482 Question Type : MCQ Option Shuffling : No Is Question Mandatory : No

Correct Marks: 1 Wrong Marks: 0

For a m-dimensional random variable, the sum of the variances of its first p (< m) principal components is

- 1. greater than its own total variability
- 2. equal to the total variability of any of its p components
- 3. less than its own total variability
- 4. equal to its own total variability

Options:

51245234513.1

51245234514. 2

51245234515.3

51245234516.4

Question Number: 5 Question Id: 51245211483 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

Principal component analysis is primarily used

- 1. as a data reduction technique
- 2. to study cause-effect relationships
- 3. as a grouping technique
- 4. to study inter variable relationships

Options:

51245234517.1

51245234518. 2

51245234519.3

51245234520.4

Question Number: 6 Question Id: 51245211484 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

In the divisive hierarchical clustering method with n units, we

- 1. start with a single cluster of n units and split it into n/2 clusters of 2 units each
- 2. start with n clusters of 1 unit each and merge them into 2 clusters of n/2 units
- 3. start with a single cluster of n units and split it into n clusters of 1 unit each
- 4. start with n clusters of 1 unit each and merge them into 1 cluster of n units

Options:

51245234521.1

51245234522. 2

51245234523.3

51245234524.4

Question Number : 7 Question Id : 51245211485 Question Type : MCQ Option Shuffling : No Is Question Mandatory : No

Correct Marks: 1 Wrong Marks: 0

The part of the variance of a variable explained by the factors is known as

- 1. communality
- 2. uniqueness
- 3. factor loading
- 4. factor score

Options:

- 51245234525. 1
- 51245234526. 2
- 51245234527.3
- 51245234528.4

Question Number: 8 Question Id: 51245211486 Question Type: MCQ Option Shuffling: No Is Question Mandatory: No

Correct Marks: 1 Wrong Marks: 0

The dispersion matrix Σ of a factor model can be split as (where L is the matrix of loadings, Ψ is the error dispersion matrix and I is the identity matrix):

- 1. $\Sigma = LL' + I$
- 2. $\Sigma = L + \Psi$
- 3. $\Sigma = I + L\Psi L'$
- 4. $\Sigma = LL' + \Psi$

Options:

- 51245234529.1
- 51245234530. 2
- 51245234531.3
- 51245234532.4

Question Number : 9 Question Id : 51245211487 Question Type : MCQ Option Shuffling : No Is Question Mandatory : No

Correct Marks: 1 Wrong Marks: 0

For the pair of canonical variables (U_j, V_j) , j = 1, ..., p, which of the following is true:

- 1. $Cov(U_j, V_j) = 0$ for all j and $Cov(U_j, V_k) = 0$ for all $j \neq k$
- 2. $Cov(U_j, V_j) \neq 0$ for all j and $Cov(U_j, V_k) = 0$ for all $j \neq k$
- 3. $Cov(U_i, V_i) = 0$ for all j and $Cov(U_i, V_k) \neq 0$ for all $j \neq k$
- 4. $Cov(U_j, V_j) \neq 0$ for all j and $Cov(U_j, V_k) \neq 0$ for all $j \neq k$

Options:

- 51245234533.1
- 51245234534. 2
- 51245234535.3
- 51245234536.4

Question Number: 10 Question Id: 51245211488 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

If $X \sim N_p(\mu, \Sigma)$, then for a $q \times p$ matrix L, Y = LX follows

- 1. $N_a(\mu, \Sigma)$
- 2. $N_q(L\mu, L\Sigma)$
- 3. $N_q(L\mu L', L\Sigma L')$
- 4. $N_q(L\mu, L\Sigma L')$

Options:

- 51245234537.1
- 51245234538. 2
- 51245234539.3
- 51245234540.4

Question Number: 11 Question Id: 51245211489 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

If for $\mathbf{X} = (X_1, ..., X_m)$, $E(X_j) = \mu_j$, $Var(X_j) = \sigma^2$ for all j and $Cov(X_j, X_k) = \rho$ for all $j \neq k$, j,k = 1, ..., m, then the first principal component is

1.
$$m^{-1}(X_1 + ... + X_m)$$

2.
$$m(X_1 + ... + X_m)$$

3.
$$m^{-1/2}$$
 ($X_1^2 + ... + X_m^2$)

4.
$$m^{-1/2}$$
 (X₁ + ... + X_m)

Options:

51245234541.1

51245234542. 2

51245234543.3

51245234544.4

Question Number: 12 Question Id: 51245211490 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

If $I = (I_1, ..., I_m)$ be the eigen-values of the dispersion matrix \sum and L the diagonal matrix of the eigenvalues, i.e. $L = diag((I_1, ..., I_m))$, then the asymptotic distribution of the sample eigen-values is

- 1. N(l, n^{-1/2}L²)
- 2. N(I, n⁻¹L²)
- 3. N(I, 2n-1L2)
- 4. N(I, 2n^{-1/2}L²)

Options:

51245234545. 1

51245234546. 2

51245234547.3

51245234548. 4

Question Number: 13 Question Id: 51245211491 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

lf

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \sim N_{p+q} \begin{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix}, \begin{pmatrix} \sum_{11} & \sum_{12} \\ \sum_{21} & \sum_{22} \end{pmatrix} \end{pmatrix}$$

then the conditional distribution of $\mathbf{X}_2^{qx_1}$ given $\mathbf{X}_1^{px_1} = \mathbf{x}_1$ is

1.
$$N_q (\mu_2 + \sum_{21} \sum_{11}^{-1} (\mathbf{x}_1 - \mu_1), \sum_{11} - \sum_{12} \sum_{22}^{-1} \sum_{21})$$

2.
$$N_p (\mu_2 + \sum_{21} \sum_{11}^{-1} (\mathbf{x}_1 - \mu_1), \sum_{22}^{-1} - \sum_{21} \sum_{11}^{-1} \sum_{12})$$

3.
$$N_p (\mu_2 + \sum_{21} \sum_{11}^{-1} (\mathbf{x}_1 - \mu_1), \sum_{22}^{-1} - \sum_{21} \sum_{11}^{-1} \sum_{12})$$

4.
$$N_q (\mu_2 + \sum_{21} \sum_{11}^{-1} (\mathbf{x}_1 - \mu_1), \sum_{22} - \sum_{21} \sum_{11}^{-1} \sum_{12})$$

Options:

51245234549.1

51245234550. 2

51245234551.3

51245234552.4

Question Number: 14 Question Id: 51245211492 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

Multidimensional scaling is the technique of displaying

- 1. Low dimension data in high dimensions
- 2. Low dimension data in low dimensions
- 3. High dimension data in low dimensions
- 4. High dimension data in high dimensions

Options:

51245234553.1

51245234554. 2

51245234555.3

51245234556.4

Question Number: 15 Question Id: 51245211493 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

In a one-way MANOVA setting, Roy's test statistic, based on the measures of Within group variation (W) and Between group variation (B), is given by

- 1. tr(BW⁻¹)
- 2. |W| / (|W + B|)
- 3. $tr[B(B + W)^{-1}]$
- 4. W (B+W)-1

Options:

- 51245234557. 1
- 51245234558. 2
- 51245234559.3
- 51245234560.4

Question Number: 16 Question Id: 51245211494 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

If $\ddot{\mathbf{X}}$ and S are respectively the sample mean and dispersion matrix based on a sample of size n from a normal distribution, the Hotelling T²-statistics for testing the population mean H₀: $\mathbf{\mu} = \mathbf{\mu}_0$ is

- 1. $T^2 = n(\ddot{\mathbf{X}} \mu_0)S^{-1}(\ddot{\mathbf{X}} \mu_0)$
- 2. $T^2 = n(\ddot{X} \mu_0)S(\ddot{X} \mu_0)$
- 3. $T^2 = n^{-1}(\ddot{\mathbf{X}} \mu_0)S(\ddot{\mathbf{X}} \mu_0)$
- 4. $T^2 = n^{-1}(\ddot{\mathbf{X}} \mu_0)S^{-1}(\ddot{\mathbf{X}} \mu_0)$

Options:

- 51245234561.1
- 51245234562. 2
- 51245234563.3
- 51245234564.4

Question Number: 17 Question Id: 51245211495 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

In factor analysis, the factor scores give

- 1. the estimated values of the common factors
- 2. the estimated values of the specific factors
- 3. the estimated values of the factor loadings
- 4. the estimated values of the elements of the covariance matrix

Options:

- 51245234565. 1
- 51245234566. 2
- 51245234567.3

51245234568.4

Question Number: 18 Question Id: 51245211496 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

In the partitioning method of clustering, with B as the between cluster variability and W as the within cluster variability, which of the following criterion is *not used* to reallocate the individuals optimally among the clustes.

- 1. Minimum trW
- 2. Minimum |W|
- 3. Maximum trBW-1
- 4. Minimum trBW-1

Options:

51245234569.1

51245234570.2

51245234571.3

51245234572.4

Question Number: 19 Question Id: 51245211497 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

For two sets of variables, the first canonical correlation is

- 1. Larger than all multiple correlations and simple correlations
- 2. Larger than the simple correlations, but smaller than the multiple correlations
- 3. Larger than the multiple correlations, but smaller than the simple correlations
- 4. Smaller than all multiple correlations and simple correlations

Options:

51245234573.1

51245234574. 2

51245234575.3

51245234576.4

Question Number: 20 Question Id: 51245211498 Question Type: MCQ Option Shuffling: No Is Question

Mandatory: No

Correct Marks: 1 Wrong Marks: 0

In a classification problem, the smallest value of the Total Probability of Miscalssification is referred to as

- 1. the Minimum Error Rate
- 2. the Optimum Error Rate
- 3. the Maximum Error Rate
- 4. the Average Error Rate

Options:

51245234577.1

51245234578. 2

51245234579.3

51245234580.4

Applied Multivariate Analysis-2

Section Id: 512452762

Section Number: 2
Section type: Offline

Mandatory or Optional: Mandatory

Number of Questions: 10
Number of Questions to be attempted: 10
Section Marks: 30
Mark As Answered Required?: Yes
Sub-Section Number: 1

Sub-Section Id: 512452764

Question Shuffling Allowed: No

Question Number: 21 Question Id: 51245211499 Question Type: SUBJECTIVE

Correct Marks: 3

Distinguish between hierarchical clustering and partitioning.

Question Number: 22 Question Id: 51245211500 Question Type: SUBJECTIVE

Correct Marks: 3

Distinguish between Euclidean and City-block Distances.

Question Number: 23 Question Id: 51245211501 Question Type: SUBJECTIVE

Correct Marks: 3

What is the apparent error rate in a classification problem? (No derivation/expression required)

3/26/2021

Question Number: 24 Question Id: 51245211502 Question Type: SUBJECTIVE

Correct Marks: 3

Discuss Fisher's separator for classifying two groups.

Question Number: 25 Question Id: 51245211503 Question Type: SUBJECTIVE

Correct Marks: 3

Discuss how you will choose the number of principal components to be used.

Question Number: 26 Question Id: 51245211504 Question Type: SUBJECTIVE

Correct Marks: 3

What is the contribution of the first factor to the total variability of all the variables?

Question Number: 27 Question Id: 51245211505 Question Type: SUBJECTIVE

Correct Marks: 3

Discuss the weighted least squares method of finding factor score.

Question Number: 28 Question Id: 51245211506 Question Type: SUBJECTIVE

Correct Marks: 3

Write down the characteristic function of a multivariate normal distribution.

Question Number: 29 Question Id: 51245211507 Question Type: SUBJECTIVE

Correct Marks: 3

What will be the effect of standardization on the canonical correlation?

Question Number: 30 Question Id: 51245211508 Question Type: SUBJECTIVE

Correct Marks: 3

Find the confidence region for the population mean vector of a multivariate normal distribution.

Applied Multivariate Analysis-3

Section Id: 512452763

Section Number :3Section type :OfflineMandatory or Optional :Mandatory

Number of Questions:

Number of Questions to be attempted :5Section Marks :50Mark As Answered Required? :YesSub-Section Number :1

Sub-Section Id: 512452765

Question Shuffling Allowed: No

Question Number: 31 Question Id: 51245211509 Question Type: SUBJECTIVE

Correct Marks: 10

For 4 units A, B, C and D with distances $d_{AB} = 5$, $d_{AC} = 8$, $d_{AD} = 4$, $d_{BC} = 3$, $d_{BD} = 5$ and $d_{CD} = 6$, form the dendogram using agglomerative hierarchical clustering method.

Question Number: 32 Question Id: 51245211510 Question Type: SUBJECTIVE

Correct Marks: 10

Given the apriori probabilities, joint densities and the misclassification costs for two groups, obtain a classification rule based on the minimum expected misclassification cost.

Question Number: 33 Question Id: 51245211511 Question Type: SUBJECTIVE

Correct Marks: 10

Discuss how you will derive the first principal component.

Question Number: 34 Question Id: 51245211512 Question Type: SUBJECTIVE

Correct Marks: 10

Describe how, in a factor model, you will estimate the factor loadings using the principal component technique.

Question Number: 35 Question Id: 51245211513 Question Type: SUBJECTIVE

Correct Marks: 10

Find the first canonical correlation in terms of the eigen-values.

Question Number: 36 Question Id: 51245211514 Question Type: SUBJECTIVE

Correct Marks: 10

If X ~ $N_p(\mu, \Sigma)$, where Σ unknown, describe how you will test $H_0: \mu = \mu_0$ (known) against $H_1: \mu \neq \mu_0$.

Question Number: 37 Question Id: 51245211515 Question Type: SUBJECTIVE

Correct Marks: 10

Describe the least square method of estimating the parameters of a multivariate linear model.