Paper:	B.E_B.Tech
Set Name:	Item23
Exam Date:	26 July 2022
Exam Shift:	1
Langauge:	English

Topic:	Mathematics-Section A
Item No:	1
Question ID:	100101
Question Type:	MCQ
Question:	Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function such that $f(3x) - f(x) = x$. If $f(8) = 7$, then $f(14)$ is equal to :
A:	4
B:	10
C:	11
D:	16

Topic:	Mathematics-Section A
Item No:	2
Question ID:	100102
Question Type:	MCQ
Question:	Let O be the origin and A be the point $z_1 = 1 + 2i$. If B is the point z_2 , $Re(z_2) < 0$, such that OAB is a right angled isosceles triangle with OB as hypotenuse, then which of the following is NOT true ?
A:	$\arg z_2 = \pi - \tan^{-1} 3$
B:	$\arg (z_1 - 2z_2) = -\tan^{-1}\frac{4}{3}$
C:	$ z_2 = \sqrt{10}$
D:	$\left 2z_1-z_2\right =5$

Topic:	Mathematics-Section A
--------	-----------------------

Item No:	3
Question ID:	100103
Question Type:	MCQ
Question:	If the system of linear equations. $8x+y+4z=-2$ $x+y+z=0$ $\lambda x-3y=\mu$ has infinitely many solutions, then the distance of the point $\left(\lambda,\mu,-\frac{1}{2}\right)$ from the plane $8x+y+4z+2=0 \text{ is :}$
A:	$3\sqrt{5}$
B:	4
C:	$\frac{26}{9}$
D:	$\frac{10}{3}$

Topic:	Mathematics-Section A
Item No:	4
Question ID:	100104
Question Type:	MCQ
Question:	Let A be a 2×2 matrix with det $(A) = -1$ and det $((A + I) (Adj (A) + I)) = 4$. Then the sum of the diagonal elements of A can be :
A:	-1
B:	2
C:	1
D:	$-\sqrt{2}$

Topic:	Mathematics-Section A
Item No:	5

Question ID:	100105
Question Type:	MCQ
Question:	The odd natural number a, such that the area of the region bounded by $y=1$, $y=3$, $x=0$, $x=y^a$ is $\frac{364}{3}$, is equal to :
A:	3
B:	5
C:	7
D:	9

Topic:	Mathematics-Section A
Item No:	6
Question ID:	100106
Question Type:	MCQ
Question:	Consider two G.Ps. 2, 2^2 , 2^3 , and 4, 4^2 , 4^3 , of 60 and n terms respectively. If the geometric mean of all the $60+n$ terms is $(2)^{\frac{225}{8}}$, then $\sum_{k=1}^{n} k(n-k)$ is equal to :
A:	560
B:	1540
C:	1330
D:	2600

Topic:	Mathematics-Section A
Item No:	7
Question ID:	100107
Question Type:	MCQ
Question:	If the function $f(x) = \begin{cases} \frac{\log_e (1 - x + x^2) + \log_e (1 + x + x^2)}{\sec x - \cos x} &, & x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right) - \{0\} \\ k &, & x = 0 \end{cases}$ is continuous at $x = 0$, then k is equal to :

A:	1
B:	-1
C:	e
D:	0

Topic:	Mathematics-Section A
Item No:	8
Question ID:	100108
Question Type:	MCQ
Question:	If $f(x) = \begin{cases} x + a & , & x \le 0 \\ x - 4 & , & x > 0 \end{cases}$ and $g(x) = \begin{cases} x + 1 & , & x < 0 \\ (x - 4)^2 + b & , & x \ge 0 \end{cases}$ are continuous on R , then $(gof)(2) + (fog)(-2)$ is equal to:
A:	-10
B:	10
C:	8
D:	-8

Topic:	Mathematics-Section A	
Item No:	9	
Question ID:	100109	
Question Type:	MCQ	
Question:	Let $f(x) = \begin{cases} x^3 - x^2 + 10x - 7, & x \le 1 \\ -2x + \log_2(b^2 - 4), & x > 1 \end{cases}$. Then the set of all values of b, for which $f(x)$ has maximum value at $x = 1$, is:	
A:	(-6, -2)	
B:	(2, 6)	
C:	$[-6, -2) \cup (2, 6]$	
D:	$\left[-\sqrt{6}, -2\right) \cup \left(2, \sqrt{6}\right]$	

Topic:	Mathematics-Section A
Item No:	10
Question ID:	100110
Question Type:	MCQ
Question:	If $a = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{2n}{n^2 + k^2}$ and $f(x) = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$, $x \in (0, 1)$, then:
A:	$2\sqrt{2}f\left(\frac{a}{2}\right) = f'\left(\frac{a}{2}\right)$
B:	$f\left(\frac{\mathbf{a}}{2}\right)f'\left(\frac{\mathbf{a}}{2}\right) = \sqrt{2}$
C:	$\sqrt{2}f\left(\frac{a}{2}\right) = f'\left(\frac{a}{2}\right)$
D:	$f\left(\frac{\mathbf{a}}{2}\right) = \sqrt{2} f'\left(\frac{\mathbf{a}}{2}\right)$

Topic:	Mathematics-Section A
Item No:	11
Question ID:	100111
Question Type:	MCQ
Question:	If $\frac{dy}{dx} + 2y \tan x = \sin x$, $0 < x < \frac{\pi}{2}$ and $y(\frac{\pi}{3}) = 0$, then the maximum value of $y(x)$ is:
A:	$\frac{1}{8}$
B:	$\frac{3}{4}$
C:	$\frac{1}{4}$

$\frac{1}{8}$

Topic:	Mathematics-Section A
Item No:	12
Question ID:	100112
Question Type:	MCQ
Question:	A point P moves so that the sum of squares of its distances from the points $(1, 2)$ and $(-2, 1)$ is 14. Let $f(x, y) = 0$ be the locus of P, which intersects the x -axis at the points A, B and the y -axis at the points C, D. Then the area of the quadrilateral ACBD is equal to :
A:	$\frac{9}{2}$
B:	$\frac{3\sqrt{17}}{2}$
C:	$\frac{3\sqrt{17}}{4}$
D:	9

Topic:	Mathematics-Section A	
Item No:	13	
Question ID:	100113	
Question Type:	MCQ	
	Let the tangent drawn to the parabola $y^2 = 24x$ at the point (α, β) is perpendicular to the	
Question:	line $2x + 2y = 5$. Then the normal to the hyperbola $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ at the point $(\alpha + 4, \beta + 4)$	
	does NOT pass through the point :	
A:	(25, 10)	
B:	(20, 12)	
C:	(30, 8)	

D:	(15, 13)				
----	----------	--	--	--	--

Topic:	Mathematics-Section A
Item No:	14
Question ID:	100114
Question Type:	MCQ
Question:	The length of the perpendicular from the point $(1, -2, 5)$ on the line passing through $(1, 2, 4)$ and parallel to the line $x+y-z=0=x-2y+3z-5$ is :
A:	$\sqrt{\frac{21}{2}}$
B:	$\sqrt{\frac{9}{2}}$
C:	$\sqrt{\frac{73}{2}}$
D:	1

Topic:	Mathematics-Section A	
Item No:	15	
Question ID:	100115	
Question Type:	MCQ	
Question:	Let $\vec{a} = \alpha \overset{\hat{i}}{i} + \overset{\hat{j}}{j} - \overset{\hat{k}}{k}$ and $\vec{b} = 2\overset{\hat{i}}{i} + \overset{\hat{j}}{j} - \alpha \overset{\hat{k}}{k}$, $\alpha > 0$. If the projection of $\vec{a} \times \vec{b}$ on the	
	vector $-\hat{i} + 2\hat{j} - 2\hat{k}$ is 30, then α is equal to :	
A:	$\frac{15}{2}$	
B:	8	
C:	$\frac{13}{2}$	
D:	7	

Topic:	Mathematics-Section A
Item No:	16
Question ID:	100116
Question Type:	MCQ
Question:	The mean and variance of a binomial distribution are α and $\frac{\alpha}{3}$ respectively. If $P(X=1)=\frac{4}{243}$, then $P(X=4 \text{ or } 5)$ is equal to :
A:	<u>5</u> 9
B:	$\frac{64}{81}$
C:	$\frac{16}{27}$
D:	$\frac{145}{243}$

Topic:	Mathematics-Section A	
Item No:	17	
Question ID:	100117	
Question Type:	MCQ	
Question:	Let E_1 , E_2 , E_3 be three mutually exclusive events such that $P(E_1) = \frac{2+3p}{6}$, $P(E_2) = \frac{2-p}{8}$ and $P(E_3) = \frac{1-p}{2}$. If the maximum and minimum values of p are p_1 and p_2 , then (p_1+p_2) is equal to :	
A:	$\frac{2}{3}$	
B:	<u>5</u> 3	

C:	$\frac{5}{4}$
D:	1

Topic:	Mathematics-Section A
Item No:	18
Question ID:	100118
Question Type:	MCQ
Question:	Let $S = \{\theta \in [0, 2\pi] : 8^{2\sin^2\theta} + 8^{2\cos^2\theta} = 16\}$. Then $n(S) + \sum_{\theta \in S} \left(\sec\left(\frac{\pi}{4} + 2\theta\right) \csc\left(\frac{\pi}{4} + 2\theta\right) \right)$
	is equal to:
A:	0
B:	-2
C:	-4
D:	12

Topic:	Mathematics-Section A
Item No:	19
Question ID:	100119
Question Type:	MCQ
Question:	$\tan \left(2 \tan^{-1} \frac{1}{5} + \sec^{-1} \frac{\sqrt{5}}{2} + 2 \tan^{-1} \frac{1}{8}\right)$ is equal to:
A:	1
B:	2
C:	$\frac{1}{4}$
D:	$\frac{5}{4}$

Topic:	Mathematics-Section A
Item No:	20

Question ID:	100120
Question Type:	MCQ
Question:	The statement (\sim (p \Leftrightarrow \sim q)) \wedge q is:
A:	a tautology
B:	a contradiction
C:	equivalent to $(p \Rightarrow q) \land q$
D:	equivalent to $(p \Rightarrow q) \land p$

Topic:	Mathematics-Section B
Item No:	21
Question ID:	100121
Question Type:	Numeric Answer
Question:	If for some p, q, r \in R , not all have same sign, one of the roots of the equation $(p^2+q^2)x^2-2q(p+r)x+q^2+r^2=0$ is also a root of the equation $x^2+2x-8=0$, then $\frac{q^2+r^2}{p^2}$ is equal to

Topic:	Mathematics-Section B
Item No:	22
Question ID:	100122
Question Type:	Numeric Answer
Question:	The number of 5-digit natural numbers, such that the product of their digits is 36, is

Topic:	Mathematics-Section B
Item No:	23
Question ID:	100123
Question Type:	Numeric Answer
Question:	The series of positive multiples of 3 is divided into sets : $\{3\}$, $\{6, 9, 12\}$, $\{15, 18, 21, 24, 27\}$, Then the sum of the elements in the 11^{th} set is equal to

Topic:	Mathematics-Section B
Item No:	24
Question ID:	100124
Question Type:	Numeric Answer
Question:	The number of distinct real roots of the equation $x^5(x^3-x^2-x+1)+x (3x^3-4x^2-2x+4)-1=0$ is

Topic:	Mathematics-Section B
Item No:	25
Question ID:	100125
Question Type:	Numeric Answer
Question:	If the coefficients of x and x^2 in the expansion of $(1+x)^p$ $(1-x)^q$, p , $q \le 15$, are -3 and -5 respectively, then the coefficient of x^3 is equal to

Topic:	Mathematics-Section B
Item No:	26
Question ID:	100126
Question Type:	Numeric Answer
Question:	If $n(2n+1) \int_0^1 (1-x^n)^{2n} dx = 1177 \int_0^1 (1-x^n)^{2n+1} dx$, then $n \in \mathbb{N}$ is equal to

Topic:	Mathematics-Section B
Item No:	27
Question ID:	100127
Question Type:	Numeric Answer
	Let a curve $y = y(x)$ pass through the point (3, 3) and the area of the region under this
Question:	curve, above the <i>x</i> -axis and between the abscissae 3 and $x(>3)$ be $\left(\frac{y}{x}\right)^3$. If this curve also
	passes through the point $(\alpha, 6\sqrt{10})$ in the first quadrant, then α is equal to

Topic:	Mathematics-Section B
Item No:	28

Question ID:	100128
Question Type:	Numeric Answer
Question:	The equations of the sides AB, BC and CA of a triangle ABC are $2x + y = 0$, $x + py = 15a$ and $x - y = 3$ respectively. If its orthocentre is (2, a), $-\frac{1}{2} < a < 2$, then p is equal to

Topic:	Mathematics-Section B
Item No:	29
Question ID:	100129
Question Type:	Numeric Answer
Question:	Let the function $f(x) = 2x^2 - \log_e x$, $x > 0$, be decreasing in $(0, a)$ and increasing in $(a, 4)$. A tangent to the parabola $y^2 = 4ax$ at a point P on it passes through the point $(8a, 8a - 1)$
	but does not pass through the point $\left(-\frac{1}{a}, 0\right)$. If the equation of the normal at P is
	$\frac{x}{\alpha} + \frac{y}{\beta} = 1$, then $\alpha + \beta$ is equal to

Topic:	Mathematics-Section B
Item No:	30
Question ID:	100130
Question Type:	Numeric Answer
Question:	Let Q and R be two points on the line $\frac{x+1}{2} = \frac{y+2}{3} = \frac{z-1}{2}$ at a distance $\sqrt{26}$ from the point P(4, 2, 7). Then the square of the area of the triangle PQR is

Topic:	Physics-Section A
Item No:	31
Question ID:	100131
Question Type:	MCQ

Question:	figure. All the surfaces are frictionless and strings are inextensible and weightless. The pulleys are also weightless and frictionless. A force F is applied on the system so that the mass m_2 moves upward with an acceleration of 2 ms ⁻² . The value of F is: $(Take\ g=10\ ms^{-2})$ $m_1=10\ kg$ $m_2=20\ kg$ $3360\ N$
B:	3380 N
C:	3120 N
D:	3240 N

Topic:	Physics-Section A
Item No:	32
Question ID:	100132
Question Type:	MCQ
Question:	A radio can tune to any station in 6 MHz to 10 MHz band. The value of corresponding wavelength bandwidth will be :
A:	4 m
B:	20 m
C:	30 m
D:	50 m

Topic:	Physics-Section A
Item No:	33
Question ID:	100133
Question Type:	MCQ

Question:	The disintegration rate of a certain radioactive sample at any instant is 4250 disintegrations per minute. 10 minutes later, the rate becomes 2250 disintegrations per minute. The approximate decay constant is : $ (\text{Take log}_{10} 1.88 = 0.274) $
A:	0.02 min ⁻¹
B:	2.7min^{-1}
C:	0.063 min ⁻¹
D:	6.3 min^{-1}

Topic:	Physics-Section A
Item No:	34
Question ID:	100134
Question Type:	MCQ
Question:	A parallel beam of light of wavelength 900 nm and intensity 100 Wm $^{-2}$ is incident on a surface perpendicular to the beam. The number of photons crossing 1 cm 2 area perpendicular to the beam in one second is :
A:	3×10^{16}
B:	4.5×10^{16}
C:	4.5×10^{17}
D:	4.5×10^{20}

Topic:	Physics-Section A
Item No:	35
Question ID:	100135
Question Type:	MCQ
Question:	In Young's double slit experiment, the fringe width is 12 mm. If the entire arrangement is placed in water of refractive index $\frac{4}{3}$, then the fringe width becomes (in mm):
A:	16

B:	9
C:	48
D:	12

Topic:	Physics-Section A
Item No:	36
Question ID:	100136
Question Type:	MCQ
Question:	The magnetic field of a plane electromagnetic wave is given by : $\overrightarrow{B} = 2 \times 10^{-8} \sin (0.5 \times 10^3 x + 1.5 \times 10^{11} t) \ \hat{j} \ \text{T}.$ The amplitude of the electric field would be :
A:	6 Vm ⁻¹ along <i>x</i> -axis
B:	3 Vm ⁻¹ along z-axis
C:	6 Vm ⁻¹ along z-axis
D:	$2 \times 10^{-8} \text{ Vm}^{-1}$ along z-axis

Topic:	Physics-Section A
Item No:	37
Question ID:	100137
Question Type:	MCQ
	In a series LR circuit $X_L = R$ and power factor of the circuit is P_1 . When capacitor with
Question:	capacitance C such that $X_L = X_C$ is put in series, the power factor becomes P_2 . The ratio $\frac{P_1}{P_2}$ is:
A:	$\frac{1}{2}$

B:	$\frac{1}{\sqrt{2}}$
C:	$\frac{\sqrt{3}}{\sqrt{2}}$
D:	2:1

Topic:	Physics-Section A
Item No:	38
Question ID:	100138
Question Type:	MCQ
Question:	A charge particle is moving in a uniform magnetic field $(2\hat{i} + 3\hat{j})$ T . If it has an acceleration of $(\alpha\hat{i} - 4\hat{j})$ m/s², then the value of α will be :
A:	3
B:	6
C:	12
D:	2

Topic:	Physics-Section A
Item No:	39
Question ID:	100139
Question Type:	MCQ
Question:	B_X and B_Y are the magnetic fields at the centre of two coils X and Y respectively each carrying equal current. If coil X has 200 turns and 20 cm radius and coil Y has 400 turns and 20 cm radius, the ratio of B_X and B_Y is :
A:	1:1
B:	1:2
C:	2:1
D:	4:1

Topic:	Physics-Section A
Item No:	40
Question ID:	100140
Question Type:	MCQ
Question:	The current I in the given circuit will be : $ \begin{array}{c c} & 4\Omega \\ & & & \\ $
A:	10 A
B:	20 A
C:	4 A
D:	40 A

Topic:	Physics-Section A
Item No:	41
Question ID:	100141
Question Type:	MCQ
Question:	The total charge on the system of capacitors C_1 =1 μF , C_2 =2 μF , C_3 =4 μF and C_4 =3 μF connected in parallel is : (Assume a battery of 20 V is connected to the combination)
A:	200 μC
B:	200 C
C:	10 μC
D:	10 C

Topic:	Physics-Section A	
--------	-------------------	--

Item No:	42
Question ID:	100142
Question Type:	MCQ
Question:	When a particle executes Simple Hormonic Motion, the nature of graph of velocity as a function of displacement will be :
A:	Circular
B:	Elliptical
C:	Sinusoidal
D:	Straight line

Topic:	Physics-Section A
Item No:	43
Question ID:	100143
Question Type:	MCQ
Question:	7 mol of a certain monoatomic ideal gas undergoes a temperature increase of 40K at constant pressure. The increase in the internal energy of the gas in this process is : $ (\text{Given R} = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}) $
A:	5810 J
B:	3486 J
C:	11620 J
D:	6972 J

Topic:	Physics-Section A
Item No:	44
Question ID:	100144
Question Type:	MCQ
Question:	A monoatomic gas at pressure P and volume V is suddenly compressed to one eighth of its original volume. The final pressure at constant entropy will be :
A:	P

B:	8P
C:	32P
D:	64P

Topic:	Physics-Section A
Item No:	45
Question ID:	100145
Question Type:	MCQ
Question:	A water drop of radius 1 cm is broken into 729 equal droplets. If surface tension of water is 75 dyne/cm, then the gain in surface energy upto first decimal place will be : (Given π =3.14)
A:	$8.5 \times 10^{-4} \text{ J}$
B:	$8.2 \times 10^{-4} \text{ J}$
C:	$7.5 \times 10^{-4} \text{ J}$
D:	$5.3 \times 10^{-4} \text{ J}$

Topic:	Physics-Section A
Item No:	46
Question ID:	100146
Question Type:	MCQ
Question:	The percentage decrease in the weight of a rocket, when taken to a height of 32 km above the surface of earth will, be : $ (\text{Radius of earth} = 6400 \text{ km}) $
A:	1 %
B:	3 %
C:	4 %
D:	0.5%

Topic:

Item No:	47
Question ID:	100147
Question Type:	MCQ
Question:	As per the given figure, two blocks each of mass 250 g are connected to a spring of spring constant $2 \mathrm{Nm^{-1}}$. If both are given velocity v in opposite directions, then maximum elongation of the spring is : $250 \mathrm{g}$
A:	$\frac{v}{2\sqrt{2}}$
B:	$\frac{v}{2}$
C:	$\frac{v}{4}$
D:	$\frac{v}{\sqrt{2}}$

Topic:	Physics-Section A
Item No:	48
Question ID:	100148
Question Type:	MCQ
Question:	A monkey of mass 50 kg climbs on a rope which can withstand the tension (T) of 350 N. If monkey initially climbs down with an acceleration of 4 m/s ² and then climbs up with an acceleration of 5 m/s ² . Choose the correct option ($g = 10 \text{ m/s}^2$).
A:	T=700 N while climbing upward
B:	T=350 N while going downward
C:	Rope will break while climbing upward
D:	Rope will break while going downward

Topic:	Physics-Section A
Item No:	49
Question ID:	100149
Question Type:	MCQ
Question:	Two projectiles thrown at 30° and 45° with the horizontal respectively, reach the maximum height in same time. The ratio of their initial velocities is :
A:	$1:\sqrt{2}$
B:	2:1
C:	$\sqrt{2}:1$
D:	1:2

Topic:	Physics-Section A
Item No:	50
Question ID:	100150
Question Type:	MCQ
Question:	A screw gauge of pitch 0.5 mm is used to measure the diameter of uniform wire of length 6.8 cm, the main scale reading is 1.5 mm and circular scale reading is 7. The calculated curved surface area of wire to appropriate significant figures is : [Screw gauge has 50 divisions on its circular scale]
A:	6.8 cm^2
B:	3.4 cm^2
C:	3.9 cm^2
D:	2.4 cm^2

Topic:	Physics-Section B
Item No:	51
Question ID:	100151
Question Type:	Numeric Answer

Question:	If the initial velocity in horizontal direction of a projectile is unit vector $\stackrel{\wedge}{i}$ and the equation of
	trajectory is $y = 5x(1-x)$. The y component vector of the initial velocity is
	(Take $g = 10 \text{ m/s}^2$)

Topic:	Physics-Section B
Item No:	52
Question ID:	100152
Question Type:	Numeric Answer
Question:	A disc of mass 1 kg and radius R is free to rotate about a horizontal axis passing through its centre and perpendicular to the plane of disc. A body of same mass as that of disc is fixed at the highest point of the disc. Now the system is released, when the body comes to the lowest position, its angular speed will be $4\sqrt{\frac{x}{3R}}$ rad s ⁻¹ where $x =$ $(g = 10 \text{ ms}^{-2})$

Topic:	Physics-Section B
Item No:	53
Question ID:	100153
Question Type:	Numeric Answer
Question:	In an experiment to determine the Young's modulus of wire of a length exactly 1 m, the extension in the length of the wire is measured as 0.4 mm with an uncertainty of \pm 0.02 mm when a load of 1 kg is applied. The diameter of the wire is measured as 0.4 mm with an uncertainty of \pm 0.01 mm. The error in the measurement of Young's modulus (Δ Y) is found to be $x \times 10^{10}$ Nm $^{-2}$. The value of x is (take g=10 ms $^{-2}$)

Topic:	Physics-Section B
Item No:	54
Question ID:	100154
Question Type:	Numeric Answer

	When a car is approaching the observer, the frequency of horn is 100 Hz. After passing the
Question:	observer, it is 50 Hz. If the observer moves with the car, the frequency will be $\frac{x}{3}$ Hz where
	<i>x</i> =

	·		
Topic:	Physics-Section B		
Item No:	55		
Question ID:	100155		
Question Type:	Numeric Answer		
Question:	A composite parallel plate capacitor is made up of two different dielectric materials with different thickness (t_1 and t_2) as shown in figure. The two different dielectric materials are separated by a conducting foil F. The voltage of the conducting foil is V. $ \epsilon_{r_1} = \frac{3}{3}; t_1 = 0.5 \text{ mm} $ $ \epsilon_{r_2} = \frac{3}{4}; t_2 = 1 \text{ mm} $ $ 100 \text{ V} $		

Topic:	Physics-Section B			
Item No:	56			
Question ID:	100156			
Question Type:	Numeric Answer			
Question:	Resistances are connected in a meter bridge circuit as shown in the figure. The balancing length l_1 is 40 cm. Now an unknown resistance x is connected in series with P and new balancing length is found to be 80 cm measured from the same end. Then the value of x will be Ω .			

|--|

Topic:	Physics-Section B
•	

Item No:	59		
Question ID:	100159		
Question Type:	Numeric Answer		
Question:	In the hydrogen spectrum, λ be the wavelength of first transition line of Lyman series. The wavelength difference will be "a λ " between the wavelength of 3 rd transition line of Paschen series and that of 2 rd transition line of Balmer series where a =		

Topic:	Physics-Section B	
Item No:	60	
Question ID:	100160	
Question Type:	Numeric Answer	
Question:	In the circuit shown below, maximum zener diode current will be mA. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Topic:	Chemistry-Section A				
Item No:	61				
Question ID:	100161				
Question Type:	MCQ				
	Mato	h List - I with List - II	[.		
		List - I		List - II	
		(Compound)		(Shape)	
Question:	(A)	${\rm BrF}_5$	(I)	bent	
Question.	(B)	[CrF ₆] ³⁻	(II)	square pyramidal	
	(C)	O_3	(III)	trigonal bipyramidal	
	(D)	PCl ₅	(IV)	octahedral	
	Choose the correct answer from the options given below:				

A:	(A) - (I), (B) - (II), (C) - (III), (D) - (IV)
B:	(A) - (IV), (B) - (III), (C) - (II), (D) - (I)
C:	(A) - (II), (B) - (IV), (C) - (I), (D) - (III)
D:	(A) - (III), (B) - (IV), (C) - (II), (D) - (I)

Topic:	Chemistry-Section A					
Item No:	62					
Question ID:	100162					
Question Type:	MCQ					
	Match List - I with List - II.					
	List - I	List - II				
	(Processes/Reactions)		(Catalyst)			
Question:	(A) $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$	(I)	Fe(s)			
Question.	(B) $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	(II)	Pt(s) - Rh(s)			
	(C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$	(III)	V_2O_5			
	(D) Vegetable oil(l) + H ₂ \rightarrow Vegetable ghee(s)	(IV)	Ni(s)			
	Choose the correct answer from the options given below:					
A:	(A) - (III), (B) - (I), (C) - (II), (D) - (IV)					
B:	(A) - (III), (B) - (II), (C) - (I), (D) - (IV)					
C:	(A) - (IV), (B) - (III), (C) - (I), (D) - (II)					
D:	(A) - (IV), (B) - (II), (C) - (III), (D) - (I)					

Topic:	Chemistry-Section A		
Item No:	63		
Question ID:	100163		
Question Type:	MCQ		

	Given two statements below:			
Question:	Statement I: In Cl ₂ molecule the covalent radius is double of the atomic radius of chlorine.			
Question:	Statement II: Radius of anionic species is always greater than their parent atomic radius.			
	Choose the most appropriate answer from options given below:			
A:	Both Statement I and Statement II are correct.			
B:	Both Statement I and Statement II are incorrect.			
C:	Statement I is correct but Statement II is incorrect.			
D:	Statement I is incorrect but Statement II is correct.			

Topic:	Chemistry-Section A		
Item No:	64		
Question ID:	100164		
Question Type:	MCQ		
Question:	Refining using liquation method is the most suitable for metals with :		
A:	Low melting point		
B:	High boiling point		
C:	High electrical conductivity		
D:	Less tendency to be soluble in melts than impurities		

Topic:	Chemistry-Section A
Item No:	65
Question ID:	100165
Question Type:	MCQ
Question:	Which of the following can be used to prevent the decomposition of $\mathrm{H_2O_2}$?
A:	Urea
B:	Formaldehyde
C:	Formic acid
D:	Ethanol

Topic:	Chemistry-Section A
Item No:	66
Question ID:	100166
Question Type:	MCQ
	Reaction of BeCl ₂ with LiAlH ₄ gives:
	(A) AlCl ₃
	(B) BeH ₂
Question:	(C) LiH
	(D) LiCl
	(E) BeAlH ₄
	Choose the correct answer from options given below :
A:	(A), (D) and (E)
B:	(A), (B) and (D)
C:	(D) and (E)
D:	(B), (C) and (D)

Topic:	Chemistry-Section A
Item No:	67
Question ID:	100167
Question Type:	MCQ
Question:	Borazine, also known as inorganic benzene, can be prepared by the reaction of 3-equivalents of "X" with 6-equivalents of "Y". "X" and "Y", respectively are :
A:	B(OH) ₃ and NH ₃
B:	B ₂ H ₆ and NH ₃
C:	$\mathrm{B_2H_6}$ and $\mathrm{HN_3}$
D:	NH ₃ and B ₂ O ₃

Topic: Chemistry-Section A

Item No:	68
Question ID:	100168
Question Type:	MCQ
Question:	Which of the given reactions is not an example of disproportionation reaction?
A:	$2H_2O_2 \rightarrow 2H_2O + O_2$
B:	$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$
C:	$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$
D:	$3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^- + MnO_2 + 2H_2O$

Topic:	Chemistry-Section A
Item No:	69
Question ID:	100169
Question Type:	MCQ
Question:	The dark purple colour of ${\rm KMnO_4}$ disappears in the titration with oxalic acid in acidic medium. The overall change in the oxidation number of manganese in the reaction is :
A:	5
B:	1
C:	7
D:	2

Topic:	Chemistry-Section A
Item No:	70
Question ID:	100170
Question Type:	MCQ
Question:	$ ightharpoonup^{ullet}$ C1 + CH ₄ $ ightharpoonup$ A + B A and B in the above atmospheric reaction step are :
A:	C ₂ H ₆ and Cl ₂

B:	• CHCl ₂ and H ₂
C:	\dot{c}_{H_3} and HCl
D:	C ₂ H ₆ and HCl

Topic:	Chemistry-Section A
Item No:	71
Question ID:	100171
Question Type:	MCQ
Question:	Which technique among the following, is most appropriate in separation of a mixture of 100 mg of p -nitrophenol and picric acid ?
A:	Steam distillation
B:	2-5 ft long column of silica gel
C:	Sublimation
D:	Preparative TLC (Thin Layer Chromatography)

Topic:	Chemistry-Section A
Item No:	72
Question ID:	100172
Question Type:	MCQ
Question:	The difference in the reaction of phenol with bromine in chloroform and bromine in water medium is due to :
A:	Hyperconjugation in substrate
B:	Polarity of solvent
C:	Free radical formation
D:	Electromeric effect the substrate

Topic:	Chemistry-Section A
Item No:	73

Question ID:	100173
Question Type:	MCQ
Question:	Which of the following compounds is not aromatic?
A:	
B:	
C:	H
D:	

Topic:	Chemistry-Section A	
Item No:	74	
Question ID:	100174	
Question Type:	MCQ	
Question:	The products formed in the following reaction, A and B are	

Topic:	Chemistry-Section A
Item No:	75
Question ID:	100175
Question Type:	MCQ

Question:	Which reactant will give the following alcohol on reaction with one mole of phenyl magnesium bromide (PhMgBr) followed by acidic hydrolysis ? $ \begin{array}{c} Ph \\ Ph-C-OH \\ CH_3 \end{array} $
A:	$CH_3 - C \equiv N$
B:	$Ph-C \equiv N$
C:	$CH_3 - C - O - Ph$
D:	Ph-C-CH ₃

Topic:	Chemistry-Section A	
Item No:	76	
Question ID:	100176	
Question Type:	MCQ	
Question:	The major product of the following reaction is $\begin{array}{c} \text{OCH}_3\\ \text{O}_2\text{N} \\ \hline & \text{(i) Na/liq.NH}_3\\ \hline & \text{(ii) CH}_3\text{CH}_2\text{OH} \\ \end{array}$	
A:	O ₂ N OCH ₃	

Topic:	Chemistry-Section A	
Item No:	77	
Question ID:	100177	
Question Type:	MCQ	
Question:	The correct stability order of the following diazonium salt is $ {}^{+}N_2Cl^- \\ (A) \qquad {}^{+}N_2^+Cl^- \\ (B) \qquad {}^{+}N_2^+Cl^- \\ (C) \qquad {}^{+}N_2^+Cl^- \\ (D) \qquad {}^{+}Cl^- \\ (D) \qquad {}^{+$	
A:	(A) > (B) > (C) > (D)	
B:	(A) > (C) > (D) > (B)	

Topic:	Chemistry-Section A
Item No:	78
Question ID:	100178
Question Type:	MCQ
Question:	Stearic acid and polyethylene glycol react to form which one of the following soap/s detergents?
A:	Cationic detergent
B:	Soap
C:	Anionic detergent
D:	Non-ionic detergent

Topic:	Chemistry-Section A	
Item No:	79	
Question ID:	100179	
Question Type:	MCQ	
Question:	Which one of the following is a reducing sugar?	
A:	H-C-OH H-C-OH HO-C-H O H-COH H-C	

Topic:	Chemistry-Section	A
Item No:	80	
Question ID:	100180	
Question Type:	MCQ	
Question:	Reason (R). Assertion (A): Reason (R):	two statements: one is labelled as Assertion (A) and the other is labelled as Experimental reaction of CH_3Cl with aniline and anhydrous $AlCl_3$ does not give o and p -methylaniline. The $-NH_2$ group of aniline becomes deactivating because of salt formation with anhydrous $AlCl_3$ and hence yields m -methyl aniline as the product. The above statements, choose the most appropriate answer from the options
	given below:	ie ace to statements, choose are most appropriate answer from the options

A:	Both (A) and (R) are true and (R) is the correct explanation of (A).
B:	Both (A) and (R) are true but (R) is not the correct explanation of (A).
C:	(A) is true, but (R) is false.
D:	(A) is false, but (R) is true.

Topic:	Chemistry-Section B
Item No:	81
Question ID:	100181
Question Type:	Numeric Answer
Question:	Chlorophyll extracted from the crushed green leaves was dissolved in water to make 2 L solution of Mg of concentration 48 ppm. The number of atoms of Mg in this solution is $x \times 10^{20}$ atoms. The value of x is (Nearest Integer) (Given : Atomic mass of Mg is 24 g mol $^{-1}$; N _A = 6.02×10^{23} mol $^{-1}$)

Topic:	Chemistry-Section B	
Item No:	82	
Question ID:	100182	
Question Type:	Numeric Answer	
Question:	A mixture of hydrogen and oxygen contains 40% hydrogen by mass when the pressure is 2.2 bar. The partial pressure of hydrogen is bar. (Nearest Integer)	

Topic:	Chemistry-Section B
Item No:	83
Question ID:	100183
Question Type:	Numeric Answer
Question:	The wavelength of an electron and a neutron will become equal when the velocity of the electron is x times the velocity of neutron. The value of x is (Nearest Integer) (Mass of electron is 9.1×10^{-31} kg and mass of neutron is 1.6×10^{-27} kg)

Topic:	Chemistry-Section B
Item No:	84

Question ID:	100184
Question Type:	Numeric Answer
Question:	2.4 g coal is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atm pressure. The temperature of the calorimeter rises from 298 K to 300 K. The enthalpy change during the combustion of coal is $-x$ kJ mol ⁻¹ . The value of x is (Nearest Integer) (Given : Heat capacity of bomb calorimeter 20.0 kJ K ⁻¹ . Assume coal to be pure carbon)

Topic:	Chemistry-Section B
Item No:	85
Question ID:	100185
Question Type:	Numeric Answer
Question:	When 800 mL of 0.5 M nitric acid is heated in a beaker, its volume is reduced to half and 11.5 g of nitric acid is evaporated. The molarity of the remaining nitric acid solution is $x \times 10^{-2}$ M. (Nearest Integer) (Molar mass of nitric acid is 63 g mol ⁻¹)

Topic:	Chemistry-Section B
Item No:	86
Question ID:	100186
Question Type:	Numeric Answer
Question:	At 298 K, the equilibrium constant is 2×10^{15} for the reaction : $Cu(s) + 2Ag^+(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$ The equilibrium constant for the reaction $\frac{1}{2}Cu^{2+}(aq) + Ag(s) \rightleftharpoons \frac{1}{2}Cu(s) + Ag^+(aq)$ is $x \times 10^{-8}$. The value of x is (Nearest Integer)

Topic:	Chemistry-Section B
Item No:	87
Question ID:	100187

Question Type:	Numeric Answer
Question:	The amount of charge in F (Faraday) required to obtain one mole of iron from ${\rm Fe_3O_4}$ is (Nearest Integer)
Topic:	Chemistry-Section B
Item No:	88
Question ID:	100188
Question Type:	Numeric Answer
Question:	For a reaction $A \to 2B + C$ the half lives are 100 s and 50 s when the concentration of reactant A is 0.5 and 1.0 mol L^{-1} respectively. The order of the reaction is (Nearest Integer)
- ·	
Topic:	Chemistry-Section B
Item No:	89
Question ID:	100189
Question Type:	Numeric Answer
Question:	The difference between spin only magnetic moment values of $[Co(H_2O)_6]Cl_2$ and $[Cr(H_2O)_6]Cl_3$ is
Topio	Chamietry Section B
Topic:	Chemistry-Section B
Item No:	90

In the presence of sunlight, benzene reacts with Cl_2 to give product, X . The number of

Question

Question

Question:

Type:

ID:

100190

Numeric Answer

hydrogens in X is _____