PREVIEW QUESTION BANK

Module Name : nou24-ec04 Fundamental of Electronic Engineering-ENG Exam Date : 18-May-2024 Batch : 09:00-12:00

r. Clien	nt Question Question Body and Alternatives	Marks Ne	legat Mar
jective Qu	uestion	7. 7.	
1321100	01	2.0	0 0
	The formation of energy bands in solids is primarily a result of the overlap of:		
	4 Alicelai		
	1. Nuclei		
	2. Valence electrons		
	3. Conduction electrons		
	4. Atomic orbitals		
	A1:1		
	AI.I		
	A2:2		
	A3:3		
	A4:4		
ective Qu	uestion		
13211002	02	2.0) (
	In which type of band gap transition do photons play a crucial role?		
	In which type of band gap transition do photons play a crucial role?		
	1. Direct Band Gap		
	2. Indirect Band Gap		
	3. Variable Band Gap		
	4. Narrow Band Gap		
	1. Hallow Balla Gap		
	A1:1		
	12.2		
	A2:2		
	A3:3		
	A4:4		
ective Qu 13211003		2.0	0 0
1321100		2.0	ا ا
	As temperature increases, what happens to the Fermi-Dirac distribution function?		
	1. Increases		
	2. Decreases		
	3. Remains constant		
	4. Fluctuates randomly		
	4. Fluctuates randomly		
	4. Fluctuates randomly		
	4. Fluctuates randomly A1:1		

			A2:2		
			A3:3		
			A4.4		
			A4:4		
L	21 :	ctive Quest			
		13211004	On	2.0	0.00
			What is the primary cause of drift motion in semiconductors?		
			1. Thermal agitation		
			Quantum tunneling		
			3. Magnetic field effects		
			4. Atomic collisions		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
15		ctive Questi	on		1
4	5	13211005		2.0	0.00
			In semiconductors, an increase in temperature generally leads to:		
			Decreased conductivity		
			2. Increased conductivity		
			No change in conductivity		
			Inverse relationship with electric field		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
Ļ					
6		ective Questi 13211006		2.0	0.00
		10211000	Which of the following factors does not affect diffusion current?		
			1. Temperature		
			Electric field strength		
			3. Concentration gradient		
			4. Material color		
			A1:1		
			A2:2		

		A3:3		
		A4:4		
Oh	ective Quest	ion.		
	13211007		2.0	0.00
′	13211007	Which semiconductor property is responsible for the magnitude of diffusion current?	2.0	0.00
		4 Designation		
		Resistivity Mobility		
		3. Conductivity		
		4. Capacitance		
		A1:1		
		ALL		
		A2:2		
		AZ.Z		
		A3:3		
		AJ.J		
		A4:4		
Oh	ective Quest	ion		
	13211008		2.0	0.00
		Which process is responsible for the formation of the depletion region in a p-n junction diode?		
		1. Diffusion		
		2. Conduction		
		3. Induction		
		4. Transmission		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	ective Quest	ion		
9	13211009	What does the south should be forward bissed DNI in this discussion and	2.0	0.00
		What does the equivalent circuit of a forward-biased PN-junction diode represent?		
		1. Inductor		
		Closed switch		
		3. Resistor		
		4. Capacitor		
		A1:1		
		A2:2		
		A3:3		

			A4:4		
(Obje	ctive Quest	ion		
	10	13211010	What happens to the depletion region in reverse biasing? 1. It disappears 2. It widens 3. It remains unchanged 4. It becomes a conductor	2.0	0.00
			A1:1 A2:2		
			A3:3 A4:4		
(Obie	ctive Quest	ion		
		13211011	For a circuit with multiple resistors and a diode in series, how is the total resistance affected when the diode is forward-biased? 1. Increases 2. Decreases 3. Remains the same 4. Depends on the diode type A1:1 A2:2 A3:3 A4:4	2.0	0.00
		13211012	ion	2.0	0.00
			What does PIV stand for in the context of rectifiers? 1. Primary Inverter Value 2. Peak Inverse Voltage 3. Pulse Integration Value 4. Power Inversion Variable A1:1		
			A3:3		

		A4:4		
Obj	ective Quest	ion		
	13211013	What is the advantage of a Center-tapped Full Wave Rectifier over a Bridge Full Wave Rectifier? 1. Lower cost 2. Higher efficiency 3. Simplicity in design 4. Higher output voltage A1:1 A2:2 A3:3 A4:4	2.0	0.00
Obj	ective Quest	ion		
14	13211014		2.0	0.00
14	13211014	What is the primary purpose of a Zener diode? 1. Amplification 2. Voltage Regulation 3. Signal Rectification 4. Current Amplification A1:1 A2:2 A3:3 A4:4	2.0	0.00
	ective Quest	ion	10.0	0.00
15	13211015	In a circuit diagram of a clipper, what component is responsible for clipping the waveform? 1. Resistor 2. Capacitor 3. Diode 4. Inductor A1:1 A2:2	2.0	0.00

		A4:4		
Obj	ective Quest	ion		
	13211016		2.0	0.00
		Which type of clamper circuit shifts the entire waveform in the positive direction?		
		Positive clamper		
		2. Negative clamper		
		3. Voltage clamper		
		4. Rectifying clamper		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01:	.: 0			
	ective Quest 13211017		2.0	0.00
1 /	13211017		2.0	0.00
		In a heterojunction, what role does the energy band alignment play?		
		1. It has no effect an historian telephonics		
		It has no effect on heterojunction behavior. It determines the direction of charge cognitive.		
		It defense the calculation of charge carriers.		
		3. It defines the color of the junction. 4. Energy hand alignment is not applicable in heterojunctions.		
		Energy band alignment is not applicable in heterojunctions.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
	13211018		2.0	0.00
		What are the main types of transistors?		
		what are the main types of transistors?		
		1. Light Emitting Diode (LED)		
		2. Bipolar Junction Transistor (BJT) and Field Effect Transistor (FET)		
		3. Capacitor and Resistor		
		4. Inductor and Transformer		
		A1:1		
		A2:2		
		A3:3		
\parallel				1

		A4:4		
Ohi	ective Quest	on.		
		On Control of the Con	2.0	0.00
19	13211019	In a bipolar junction transistor (BJT), which region is lightly doped and acts as a barrier for majority carriers?	2.0	0.00
		1. Base		
		2. Collector		
		3. Emitter		
		4. Source		
		A1:1		
		A2:2		
		A2 . 2		
		A3:3		
		A4:4		
Obj	ective Quest	on		
20	13211020		2.0	0.00
		What happens to the collector current (I _C) in a BJT when the base-emitter junction is reverse-biased?		
		what happens to the collector current (ig) in a but when the base-emitter junction is reverse-blased:		
		1. increases		
		2. decreases		
		3. remains constant		
		4. increase sharply		
		A1:1		
		12.2		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	on		
	13211021		2.0	0.00
		In the common base configuration, which terminal is the input, and which terminal is the output?		
		1. Input: Collector, Output: Base		
		2. Input: Base, Output: Collector		
		3. Input: Base, Output: Emitter		
		4. Input: Emitter, Output: Collector		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		м. т		

Ш				
		on		
	ective Questi 13211022	What is the primary purpose of the common emitter configuration in a bipolar junction transistor? 1. Voltage amplification 2. Current amplification 3. Power amplification 4. Signal modulation A1:1 A2:2 A3:3 A4:4	2.0	0.00
01:	0			
	ective Questi	on	0.0	0.00
	13211023	What is a characteristic feature of the input impedance in a common emitter configuration? 1. Very low 2. Very high 3. Moderate 4. Variable A1:1 A2:2 A3:3 A4:4	2.0	0.00
	ective Questi	on		
	13211024	What is the voltage gain in the Common Collector Configuration when compared to other configurations? 1. High 2. Moderate 3. Low 4. Varies with transistor type A1:1 A2:2 A3:3 A4:4	2.0	0.00
Obj	ective Questi	on		

25	13211025		2.0	0.00
		In the Ebers-Moll model, which current is primarily responsible for the transistor's output characteristics?		
		1. Collector current		
		2. Base current		
		3. Emitter current		
		Saturation current		
		A1:1		
		A2:2		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	on		
	13211026		2.0	0.00
		Which of the following configurations provides a high voltage gain and a low current gain?		
		which of the following configurations provides a high voltage gain and a low current gain?		
		1. Common-emitter		
		2. Common-base		
		3. Common-collector		
		4. Emitter-follower		
		A1:1		
		Al.1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Quest	on		
	13211027		2.0	0.00
		What is the primary function of a Field Effect Transistor (FET)?		
		1. Amplification of signals		
		2. Rectification of signals		
		3. Generation of signals		
		Switching of signals		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
L.				
Obj	ective Quest	on		

28	13211028		2.0	0.00
		In a n- type JFET, the majority carriers responsible for current conduction are:		
		1. Electrons		
		2. Holes		
		3. Protons		
		4. Neutrons		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	on		
29	13211029		2.0	0.00
		Which type of charge carriers are responsible for the current flow in n-MOS?		
		1. Electrons		
		2. Holes		
		3. Both electrons and holes		
		4. Protons		
		A1:1		
		111.1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
	ective Quest	on		
30	13211030	Which coming dust contain in a common to the fabrication of MOCEFT-0	2.0	0.00
		Which semiconductor material is commonly used in the fabrication of MOSFETs?		
		1. Silicon		
		2. Aluminum		
		3. Copper		
		4. Gold		
		4. 000		
		A1:1		
		A2:2		
		$RL \cdot L$		
		A3:3		
		A4:4		
	ective Quest		0.0	0.00
31	13211031		2.0	0.00

		The channel conductivity in a MOSFET is primarily controlled by the:		
		4 Comments		
		1. Source voltage		
		2. Drain voltage		
		3. Gate voltage		
		4. Body voltage		
		A1:1		
		Al.1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
	ective Questi			
32	13211032		2.0	0.00
		When the drain-source voltage (V _{DS}) is below the threshold voltage (V _{th}) in a MOSFET, the device operates in:		
		When the drain-source voltage (VDS) is below the threshold voltage (VIII) in a MOSI E1, the device operates in.		
		1. Cut-off region		
		2. Triode region		
		3. Saturation region		
		4. Inversion region		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Questi	on		
	13211033		2.0	0.00
		In the small signal model of a MOSFET, which parameter represents the ratio of change in drain current to change in gate-		
		source voltage?		
		1. Transconductance		
		2. Output conductance		
		3. Threshold voltage		
		4. Drain-source voltage		
		41 1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi			
34	13211034		2.0	0.00
11	1 11			11

		Which small signal model parameter is associated with the change in drain current due to a change in drain-source voltage for a MOSFET in saturation?		
		1. g _m (Transconductance) 2. r _{ds} (Drain-Source resistance) 3. r _o (Output resistance) 4. g _{ds} (Transconductance of the output)		
		A1:1		
		A2:2 A3:3		
		A4:4		
Obi	ective Quest	ion		
	13211035	In a differential amplifier, what does common-mode rejection ratio (CMRR) measure?	2.0	0.00
		The ability to amplify signals		
		2. The ability to reject common-mode signals		
		3. The gain of the amplifier		
		4. The frequency response of the amplifier		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest	ion		
36	13211036	Which term describes the difference in voltage between the two input terminals of a differential amplifier?	2.0	0.00
		Common-mode voltage		
		2. Offset voltage		
		3. Differential voltage		
		4. Feedback voltage		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Quest	ion		
37	13211037		2.0	0.00

		What is the function of a non-inverting amplifier circuit using an op-amp?		
		Increase the signal amplitude		
		Provide phase shift of 180 degrees Invert the input signal		
		Preserve the input signal phase		
		4. Preserve the input signal phase		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Questi	on		-
	13211038		2.0	0.00
		In a voltage follower circuit using an op-amp, the output voltage:		
		1. is equal to the input voltage		
		2. is inverted compared to the input voltage		
		3. is zero		
		4. is always positive		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohi	ective Questi	on		
	13211039		2.0	0.00
		In an op-amp adder circuit with multiple input resistors, what is the relationship between the input voltages and the output voltage?		
		voltage :		
		1. Summation		
		2. Multiplication		
		3. Division		
		4. Subtraction		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
OI-:	active O	on.		
Obj	ective Quest	on		

40	13211040	ASSES COR COSC - PROPER NO. NO. AT NOTES NO	2.0	0.00
		What is the purpose of the feedback resistor in an op-amp subtractor circuit?		
		Voltage amplification		
		2. Current amplification		
		3. Voltage subtraction		
		4. Current subtraction		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest	on	2.0	0.00
41	13211041	How does an operational amplifier (Op-Amp) function in a voltage multiplier circuit?	2.0	0.00
		The adds an operational amplifier (op 7 mp) function in a voltage mataphor circuit:		
		By reducing the voltage across the multiplier		
		2. By dividing the voltage across the multiplier		
		3. By amplifying the voltage across the multiplier		
		By oscillating the voltage across the multiplier		
		A1:1		
		A2:2		
		A3:3		
		AJ.J		
		A4:4		
Obj	ective Quest	on		
42	13211042		2.0	0.00
		Which configuration of operational amplifier is commonly used for voltage multiplication?		
		1 Investing amplifier		
		Inverting amplifier New inverting amplifier		
		2. Non-inverting amplifier		
		3. Integrator4. Differentiator		
		4. Differentiator		
		A1:1		
		12.2		
		A2:2		
		A3:3		
		A4:4		
C1 :				
	ective Quest 13211043		2.0	0.00
43	13211043		2.0	0.00

		What is the primary function of an OP-AMP integrator circuit? 1. Voltage amplification 2. Current amplification 3. Integration of input voltage 4. Differentiation of input voltage A1:1 A2:2 A3:3 A4:4		
	jective Quest	on		
44	13211044	What happens to a high-frequency input signal in an OP-AMP differentiator circuit? 1. It is amplified 2. It is attenuated 3. It is integrated 4. It is differentiated	2.0	0.00
		A1:1 A2:2 A3:3 A4:4		
	jective Quest	on		10.00
	13211045	What type of device is a JFET, based on its output characteristics? 1. Voltage-controlled resistor 2. Current-controlled resistor 3. Voltage-controlled current source 4. Current-controlled voltage source A1:1 A2:2 A3:3 A4:4	2.0	0.00
	jective Quest	on		
46	13211046		2.0	0.00

		What is the output characteristic of a JFET?			
		1. Linear			
		2. Exponential			
		3. Constant			
		4. Quadratic			
		4. Quadratic			
		A1:1			
		A2:2			
		12.2			
		A3:3			
		A4:4			
Ot	jective Questi	on			
47	13211047		2.0	0.00	
		In the Common Collector Configuration, the emitter is always biased with respect to which terminal?			
		in the Common Collector Configuration, the emitter is always biased with respect to which terminary			
		1. Collector			
		2. Ground			
		3. Base			
		Varies with circuit parameters			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
L					
	jective Questi	on	2.0	0.00	
48	13211048		2.0	0.00	
		Which component in a filter circuit is most effective in reducing the ripple voltage?			
		4 Desister			
		1. Resistor			
		Capacitor Inductor			
		4. Diode			
		4. Diode			
		A1:1			
		A2:2			
		A3:3			
		ns.s			
		A4:4			
Objective Question					
49	13211049		2.0	0.00	

2012	4, 11.40 P	W 011_10_51_10u24_ec04_1-50.11tml			
		In forward biasing, the diode: 1. Blocks the current flow 2. Allows the current flow 3. Acts as an insulator 4. Generates magnetic fields			
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obio	ective Questi	on		-	f
	13211050		2.0	0.00	\exists
50	13211030	In an intrinsic semiconductor, the Fermi level is located:	2.0	0.00	
		1. Above the valence band			
		2. Below the conduction band			
		3. At the middle of the energy gap			
		4. At the top of the valence band			
		4. At the top of the valence band			
		A1:1			
		A2:2			
		A3:3			
		A4:4			