PREVIEW QUESTION BANK Module Name : cec24-ma02 Algebra-ENG Exam Date : 18-May-2024 Batch : 09:00-12:00 | | Question Body and Alternatives Marks | M | gativ
Iarks | |----------------|---|-----|----------------| | jective Questi | n | 1.0 | | | | What is the polar form of $z = 1 + i$? 1. $z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ 2. $z = 2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ 3. $z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ 4. $z = \sqrt{2}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ A1: 1 A2: 2 | | | | | A4:4 | | | | jective Questi | n | 1.0 | | | | Which of the following statements are correct? (A). Suppose V is a complex vector space. Then the linear operator T on V has atleast one eigenvalue. (B). Suppose v_1, v_2, \ldots, v_n are nonzero eigenvectors of a linear operator T belonging to distinct eigen values λ_1 , $\lambda_2, \ldots, \lambda_n$. Then v_1, v_2, \ldots, v_n are linearly dependent. (C). The geometric multiplicity of an eigenvalue λ of T does not exceed its algebraic multiplicity. (D). A linear operator T is not a zero of its characteristic polynomial. 1. (B) and (D) only. 2. (A), (B), (C) and (D). 3. (A), (B) and (C) only. 4. (A) and (C) only. A1:1 A2:2 A3:3 | | | | | | | | | jective Questi | | | | ## Match the following | List-I | | List-II | |---|------------------|---------------------------------------| | (A). [5 | 3
10 | (I). $\lambda^2 - 2\lambda + I$ | | (B). [7 | ${-1 \choose 2}$ | (II). $\lambda^2 - 9\lambda + 20$ | | (C). [5 ₄ | -2
-4 | (III). $\lambda^2 - 15\lambda + 44$ | | (D). $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 0 1 | $(IV) \cdot \lambda^2 - \lambda - 12$ | Choose the correct answer from the options given below: - 1. (A) (III), (B) (II), (C) (IV), (D) (I) - 2. (A) (I), (B) (III), (C) (IV), (D) (II) - 3. (A) (II), (B) (III), (C) (IV), (D) (I) - 4. (A) (III), (B) (IV), (C) (I), (D) (II) - A1:1 - A2:2 - A3:3 - A4:4 | 4 | 14121004 | | 1.0 | 0.00 | Į | |---|-----------------|--|-----|------|---| | | | The Polar coordinates and Cartesian coordinates are same for | | | | | | | 1. (1,0) | | | | | | | 2. (2,0) | | | | | | | 3. (3,0) | | | | | | | 4. (4,0) | A1:1 | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | A3:3 | | | | | | | A). J | | | | | | | A.A A | | | | | | | A4:4 | | | | | | | | | | | | O | bjective Questi | on | | | | | 5 | 14121005 | 1.0 | 0.00 | |---|----------|-----|------| The function $f: C/\{0\} \to C$ such that $f(z) = \arg z$ is a 1. Single valued function 2. Multivalued function 3. Continuous function 4. Differentiable A1: 1 A2: 2 A3: 3 A4: 4 | | | |------|---------------|---|-----|------| | Obje | ective Questi | on . | | | | 6 | 14121006 | Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $f(\lambda) = 2\lambda^2 - 3\lambda + 5$ and $g(\lambda) = \lambda^2 - 5\lambda - 2$. List-I List-II (A). [A] (I). $\begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$ (B) $f(A)$ (II). -2 (C). $g(A)$ (III). $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (D). A^2 (IV). $\begin{bmatrix} 16 & 14 \\ 21 & 37 \end{bmatrix}$ Choose the correct answer from the options given below: 1. (A) - (I), (B) - (I), (C) - (IV), (D) - (III) 2. (A) - (IV), (B) - (I), (C) - (III), (D) - (II) 3. (A) - (II), (B) - (I), (C) - (III), (D) - (II) 4. (A) - (II), (B) - (IV), (C) - (III), (D) - (II) A1 : 1 A2 : 2 A3 : 3 | 1.0 | 0.00 | | | | A4:4 | | | | Obje | ective Questi | on | | | | 7 | 14121007 | | 1.0 | 0.00 | | | | Let $D_k=kI$, where k is a scalar, then which of the following options are correct? | | | |-----|---------------|---|-----|-------| | | | (A). $D_k A = kA$ | | | | | | (B) $BD_k = kB$ | | | | | | $(C). D_k + D_{k'} = D_{kk'}$ | | | | | | $(D).\ D_k D_{k'} = D_{k+k'}$ | | | | | | Choose the <i>correct</i> answer from the options given below: | | | | | | 1. (A) and (D) only | | | | | | 2. (B) and (D) only. | | | | | | 3. (A) and (B) only | | | | | | 4. (A), (C) and (D) only. | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | ective Questi | on | 10 | 0.00 | | 8 | 14121008 | Convert the rectangular or Cartesian coordinate (2,2) into polar coordinate. | 1.0 | 0.00 | | | | $(2,\frac{\pi}{3})$ | | | | | | 1. $(2, \frac{\pi}{3})$ 2. $(2\sqrt{2}, \frac{\pi}{4})$ 3. $(2\sqrt{2}, \frac{\pi}{3})$ | | | | | | 2. 4 | | | | | | $_{3.}(2\sqrt{2},\frac{\pi}{3})$ | | | | | | $\frac{\pi}{4}$ (2, $\frac{\pi}{4}$) | | | | | | 4. \(\frac{4}{2} \) | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A4:4 | | | | | | A4:4 | | | | Ohi | ective Questi | on | | | | 9 | 14121009 | | 1.0 | 0.00 | 11 11 | Find the polar representation of the number $z = -1 + i\sqrt{3}$. - 1. $2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$ 2. $\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ 3. $2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ 4. $\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ - A1:1 - A2:2 - A3:3 - A4:4 Objective Question ## 10 14121010 Match List-I with List-II | List-l | | List-II | |---|--|--| | (A). $(A_1 A_3 A_2)^2$ | -1 | (I). -3 | | (B). $(A_1 A_2 A_3)^2$ | -1 | (11).4 | | (C). Trace of $\begin{bmatrix} 2\\3\\4 \end{bmatrix}$ | -5 8
-6 -7
0 -1 | $\begin{bmatrix} 7 \\ 1 \end{bmatrix} (III). \ A_2^{-1} A_3^{-1} A_1^{-1}$ | | (D). Trace of $\begin{bmatrix} 6 \\ 3 \end{bmatrix}$ | $\begin{bmatrix} -4 \\ -2 \end{bmatrix}$ | (IV). $A_3^{-1}A_2^{-1}A_1^{-1}$ | Choose the correct answer from the options given below: - 1. (A) (I), (B) (III), (C) (II), (D) (IV) - 2. (A) (III), (B) (II), (C) (I), (D) (IV) - 3. (A) (II), (B) (I), (C) (IV), (D) (III) - 4. (A) (III), (B) (IV), (C) (I), (D) (II) - A1:1 - A2:2 - A3:3 - A4:4 Objective Question 14121011 11 1.0 0.00 1.0 0.00 Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): Determinant of $\begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix} = 0$ Reason (R): In a 2 x 2 matrix if one row is a scalar multiple of the other then determinant will be zero. In light of the above statements, choose the correct answer from the options given below. - 1. Both (A) and (R) are true and (R) is the correct explanation of (A). - 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). - 3. (A) is true but (R) is false. - 4. (A) is false but (R) is true. - A1:1 - A2:2 - A3:3 - A4:4 Objective Question 12 14121012 Find the polar representation of the number Z = -1 - i. - $1.\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}$ - $\begin{array}{c} 4 & 4 \\ 2 \cdot \sqrt{2(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4})} \\ 3 \cdot 2(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}) \\ 4 \cdot \sqrt{2(\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2})} \end{array}$ - A1:1 - A2:2 - A3:3 - A4:4 Objective Question 13 14121013 | The collection of complex 100 th root of unity is a | |--| | Group but not abelian | | 2. Group but not cyclic | | 3. Not a group | A1:1 4. Cyclic group A2:2 1.0 0.00 1.0 0.00 | | | A3:3 | | | |------|--------------|--|-----|------| | | | | | | | | | A4:4 | | | | | | | | | | _ | ctive Questi | | 1.0 | 0.00 | | 14 | 14121014 | Match List-I with List-II | 1.0 | 0.00 | | | | List-I List-II | | | | | | $r_1 - 11^{-1}$ $[3 - 5]$ | | | | | | $ (A) \cdot \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}^{-1} (I) \cdot \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} $ | | | | | | $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}^{-1} & \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$ | | | | | | (C) $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}^{-1}$ (III) does not exist | | | | | | 1 [-5 3] | | | | | | $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}^{-1} \begin{bmatrix} V\rangle \cdot \begin{bmatrix} -5 & \frac{3}{2} \\ \frac{2}{2} & -1 \end{bmatrix}$ | | | | | | Choose the correct answer from the options given below: | | | | | | 1. (A) - (I), (B) - (III), (C) - (IV) | | | | | | 2.
(A) - (II), (B) - (I), (C) - (IV), (D) - (III) | | | | | | 3. (A) - (I), (B) - (IV), (C) - (II), (D) - (III) | | | | | | 4. (A) - (II), (B) - (IV), (C) - (I), (D) - (III) | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A4:4 | | | | | | | | | | Obje | ctive Questi | on | | | | 15 | 14121015 | Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). | 1.0 | 0.00 | | | | Assertion (A): If G is a finite group of order n , then the order of any element $a \in G$; is a divisor of | | | | | | Reason (R): The order of each subgroup of a finite group G is a divisor of the order of G . | | | | | | In light of the above statements, choose the correct answer from the options given below. | | | | | | 1. Both (A) and (R) are true and (R) is the correct explanation of (A) | | | | | | 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A) | | | | | | 3. (A) is true but (R) is false 4. (A) is false but (R) is true | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | |-----|---------------|---|-----|------| | Obi | ective Questi | on | | | | | 14121016 | Sum of the absolute values of all the n^{th} roots of unity is, | 1.0 | 0.00 | | | | 1.1 | | | | | | 2. 0 | | | | | | 31
4. <i>n</i> | | | | | | 4. <i>1</i> 1 | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obj | ective Questi | on | | | | 17 | | | 1.0 | 0.00 | | | | Let m and n be positive integers, then the common roots of unity shared by the m^{th} and n^{th} roots of unity are precisely the | | | | | | $k^{ extit{th}}$ roots of unity where k is, | | | | | | 1. gcd (m,n) | | | | | | 2. mn | | | | | | 3. m | | | | | | 4. n | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obi | ective Questi | on | | | | 18 | 14121018 | | 1.0 | 0.00 | | | | Find the value of $(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})^{18}$ | | | | | | 1.1 | | | | | | 2.0 | | | | | | 3. 1/2 | | | | | | 4. 18 | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | |------|---------------|--|-----|------| | Ohie | ective Questi | on . | | | | 19 | 14121019 | | 1.0 | 0.00 | | | | If $x + \frac{1}{x} = 2\cos\theta$, then find the value of $x^{12} + \frac{1}{x^{12}}$ | | | | | | 1. $2\cos 6\theta$ | | | | | | 2. cos6θ | | | | | | 3. cos120 | | | | | | 4. 2cos12θ | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A1.1 | | | | | | 42.2 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | 14121020 | on | 1.0 | 0.00 | | 20 | 14121020 | | 1.0 | 0.00 | | | | Which of the following statements are correct? | | | | | | (A). A non-empty subset G' of a group G is a subgroup of G if and only if for all $a,b \in G'$, $a^{-1} \circ b \in G'$. | | | | | | (B).Let a be an element of a group G . Then $G' = \{a^n : n \in I\}$ of all integral powers of a is a subgroup of G . | | | | | | (C). If S is any set of subgroups of a group G , the intersection of these subgroups is also a subgroup of G . | | | | | | (D). Every subgroup of a cyclic group need not be a cyclic group. | | | | | | Choose the <i>correct</i> answer from the options given below: | | | | | | 1. (A) and (D) only. | | | | | | 2. (B) and (D) only. | | | | | | 3. (A), (C) and (D). | | | | | | 4. (A), (B) and (C) only. | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | ective Questi | on . | | | | 21 | 14121021 | | 1.0 | 0.00 | Match List-I with List-II | | | List-l | List-II | | | | |------|---------------|--|--|-----|-----|------| | | | (A)."is a factor of" on N | (I). is reflexive, symmetric and transitive. | | | | | | | (B)."costs within one dollar of" for men's shoes | (II). is not reflexive. | | | | | | | (C). "is the square of" on N | (III). is reflexive and symmetricbut not transitive. | | | | | | | (D). "Has the same number of vertices as " for the set of all polygons in a plane is reflexive, symmetric and transitive. | | | | | | | | Choose the correct answer from the opti
1. (A) - (II), (B) - (I), (C) - (III), (D) - (IV)
2. (A) - (IV), (B) - (I), (C) - (III), (D) - (II)
3. (A) - (IV), (B) - (III), (C) - (II), (D) - (I)
4. (A) - (III), (B) - (IV), (C) - (II), (D) - (I) | ons given below: | | | | | | | A1:1 | | | | | | | | A2:2 | | | | | | | | A3:3 | | | | | | | | A4:4 | | | | | | Obje | ective Questi | on | | | | | | 22 | 14121022 | Let z be a complex number such that z | = 4 and $arg z = \frac{5\pi}{6}$. What is z equal to? | 1.0 | 0 0 | 0.00 | | | | 1. $-2\sqrt{3} + 2i$ | | | | | | | | $ 2 \cdot 2\sqrt{3} + 2i $ $ 3 \cdot 2\sqrt{3} - 2i $ $ 4 \cdot -\sqrt{3} + i $ | | | | | | | | $3. \ 2\sqrt{3} - 2i$ | | | | | | | | $4 \cdot -\sqrt{3} + i$ | | | | | | | | A1:1 | | | | | | | | A2:2 | | | | | | | | A3:3 | | | | | | | | A4:4 | | | | | | | ective Questi | on | | | | | | 23 | 14121023 | | | 1.0 | 0 | 0.00 | Which of the relations on {0,1,2,3} is an equivalence relation? 1. {(0,0),(1,1),(2,2),(3,3)} 2. {(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)} 3. {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0)} 4. {(0,0),(2,3),(0,2),(1,1),(2,2)} A1:1 A2:2 A3:3 | | | |------------------|---------------|---|-----|------| | | | A4:4 | | | | Obi | ective Questi | on | | | | | 14121024 | Which of the following are correct? (A). $x \to x + 2$ is a mapping of \mathbb{N} into, but not onto, \mathbb{N} . (B). $x \to 3x - 2$ is a one-to-one mapping of \mathbb{Q} onto \mathbb{Q} . (C). $x \to x^3 - 3x^2 - x$ is both one-to-one and onto from \mathbb{R} to \mathbb{R} . (D). If α is a one-to-one mapping of a set S onto T , then α has exactly two inverses. Choose the correct answer from the options given below: 1. (A), (B) and (C) only. 2. (A) and (B) only. 3. (A), (B) and (D). 4. (A), (C) and (D) only. A1:1 A2:2 | 1.0 | 0.00 | | OI. | | A4:4 | | | | <u>Обј</u>
25 | 14121025 | | 1.0 | 0.00 | | | | | | | | | | Given the mappings : $lpha$: $n o n^2 + 1$ and eta : $n o 3n + 2$ of $\mathbb N$ into $\mathbb N$. Then; | | | |------------|--------------------------|--|-----|------| | | | List-I List-II | | | | | | $(A) \cdot \alpha \alpha$ $(I) \cdot 9n + 8$ | | | | | | (B). $\alpha\beta$ (II). $9n^2 + 12n + 5$ | | | | | | (C). $\beta\beta$ (III). $3n^2 + 5$ | | | | | | (D). $\beta \alpha$ (IV) $n^4 + 2n^2 + 2$ | | | | | | Choose the correct answer from the options given below: | | | | | | 1. (A) - (IV), (B) - (II), (C) - (I), (D) - (III)
2. (A) - (II), (B) - (I), (C) - (IV), (D) - (III) | | | | | | 3. (A) - (I), (B) - (III), (C) - (IV), (D) - (II) | | | | | | 4. (A) - (III), (B) - (IV), (C) - (I) | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | | | | | | | | | | | | | ective Questi | on | | | | Obje | ective Question 14121026 | on | 1.0 | 0.00 | | | | on | 1.0 | 0.00 | | | | | 1.0 | 0.00 | | | | If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 | 1.0 | 0.00 | | | | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 | 1.0 | 0.00 | | | | If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 | 1.0 | 0.00 | | | | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 | 1.0 | 0.00 | | | | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 | 1.0 | 0.00 | | | | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 | 1.0 | 0.00 | | | | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 | 1.0 | 0.00 | | | | If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 | 1.0 | 0.00 | | | | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 A2: 2 A3: 3 | 1.0 | 0.00 | | 26 | 14121026 | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 A2: 2 A3: 3 | | | | 26 | 14121026 | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 Al: 1 A2: 2 A3: 3 A4: 4 | | 0.00 | | 26
Obj. | 14121026 | If $P =
\{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 A2: 2 A3: 3 | | | | 26
Obj. | 14121026 | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 $A2: 2$ $A3: 3$ $A4: 4$ In a second of the real function $f(x) = \sqrt{x^2 - 4}$. | | | | 26 | 14121026 | If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 Al: 1 A2: 2 A3: 3 A4: 4 | | | A1:1 | | | A3:3
A4:4 | | | |------|---------------|---|-----|------| | Obje | ective Questi | on | | | | 28 | 14121028 | | 1.0 | 0.00 | | | 11121020 | Find the range of the function $f(x) = \frac{1}{1-x^2}$. | | 0.00 | | | | 1-x- | | | | | | 1. $(-\infty,0) \cup [1,\infty)$ | | | | | | 2. {0} | | | | | | 3. [1,∞) | | | | | | $4. (-\infty, \infty)$ | | | | | | 4. (30,30) | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A1.1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | 12.2 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | | | | | | | ective Questi | on | | | | 29 | 14121029 | | 1.0 | 0.00 | | | | Which of the following statements are correct? | | | | | | (A). "Is similar to" for the set T of all triangles in a plane is an equivalence relation. | | | | | | (B). " \subseteq " for the set of sets $S = \{A, B, C,\}$ Is an equivalence relation. | | | | | | (C). "Has the same radius as" for the set of all circles in a plane is an equivalence relation. | | | | | | | | | | | | (D). "≤" for the set R is an equivalence relation. | | | | | | Choose the <i>correct</i> answer from the options given below: | | | | | | 1. (A) and (D) only. | | | | | | 2. (A) and (C) only. | | | | | | 3. (A), (B) and (D). | | | | | | 4. (A), (C) and (D) only. | | | | | | i. Vy, to j and to j only. | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | | | | | A4:4 | | | | | | | | | | Obio | ective Questi | on . | | | | | 14121030 | | 1.0 | 0.00 | II. | 11 1 | | H | II. | | | | Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). | | | |------------|---------------|--|-----|------| | | | Assertion (A): Since $(\alpha\beta)(\beta^{-1}\circ\alpha^{-1})=Identity\ function, (\beta^{-1}\circ\alpha^{-1})$ is the inverse of $\alpha\beta$. | | | | | | Reason (R): If α is a one-to-one mapping of a set S onto T , then α has a unique inverse and conversely. | | | | | | In light of the above statements, choose the <i>correct</i> answer from the options given below. | | | | | | Both (A) and (R) are true and (R) is the correct explanation of (A) Both (A) and (R) are true but (R) is NOT the correct explanation of (A) (A) is true but (R) is false (A) is false but (R) is true | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obie | ective Questi | on | | | | | 14121031 | The solution to $f(x) = f^{-1}(x)$ are | 1.0 | 0.00 | | | | 1. no solutions in any case | | | | | | 2. same as solution to $f(x) = x$ | | | | | | 3. infinite number of solution for every case | | | | | | unique solution for every case | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2 - 2 | | | | | | A2:2 | | | | | | A2.2 | | | | | | A3:3 | | | | | | A.A A | | | | | | A4:4 | | | | - | | | | | | Оbје
32 | 14121032 | on | 1.0 | 0.00 | | 32 | 17121032 | If cardinality of $(A \cup B)$ = cardinality of A + cardinality of B . This means that | 1.0 | 0.00 | | | | 4. A is a subset of D | | | | | | A is a subset of B. B is a subset of A. | | | | | | 3. A and B are disjoint. | | | | | | 4. A and B are of same cardinality. | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | 11 | 11 | | | ctive Questi | on | | | |-----------|-------------------|---|-----|------| | 33 | 14121033 | The cardinality of power set of {0,1,2,3} | 1.0 | 0.00 | | | | 4.40 | | | | | | 1. 16 | | | | | | 2. 2 | | | | | | 3. 4 | | | | | | 4. 8 | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A3 . 3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | bjective Question | | | | | 34 | 14121034 | Find the quotient when -45 is divided by 7. | 1.0 | 0.00 | | | | Find the quotient when —43 is divided by 7. | | | | | | 17 | | | | | | 26 | | | | | | 3.0 | | | | | | 4.7 | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | | | | | | Ође
35 | ctive Questi | on | 1.0 | 0.00 | | 33 | 14121033 | Given below are two statements: | 1.0 | 0.00 | | | | Statement (I): The sum of n th root of unity is zero | | | | | | Statement (II): ω and ω^2 are the roots of $x^2 + x + 1 = 0$ | | | | | | In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. | | | | | | | | | | | | Both Statement (I) and Statement (II) are correct | | | | | | 2. Both Statement (I) and Statement (II) are incorrect | | | | | | 3. Statement (I) is correct but Statement (II) is incorrect | | | | | | 4. Statement (I) is incorrect but Statement (II) is correct | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | | | | | A3:3 | II | | | | | A4:4 | | | |------------|--|---|-----|------| | Obje | ective Questi | on | | | | 36 | ective Questi
14121036 | The other name of base-10 representation is 1. Octal representation 2. Hexadecimal representation 3. Decimal representation 4. Deca representation A1:1 A2:2 A3:3 A4:4 | 1.0 | 0.00 | | | ective Questi | on . | | | | 37 | 14121037 | Match List-I with List-II List-II (A) $g \circ f(x)$ (I) $g^{-1} \circ f^{-1}$ (B) $f(g(y)) = y$ (II) $g(f(x))$ (C). $(g \circ f)^{-1}$ (III). $f^{-1} = g$ (D). $(f \circ g)^{-1}$ (IV). $f^{-1} \circ g^{-1}$ Choose the correct answer from the options given below: 1. (A) - (I), (B) - (II), (C) - (II), (D) - (IV) 2. (A) - (II), (B) - (II), (C) - (IV), (D) - (IV) 3. (A) - (II), (B) - (III), (C) - (IV), (D) - (IV) 4. (A) - (III), (B) - (IV), (C) - (II), (D) - (IV) A1 : 1 A2 : 2 A3 : 3 A4 : 4 | 1.0 | 0.00 | | Obje
38 | taliana la | Find the <i>gcd</i> (1,24) 1. 1 2. 24 3. 25 4. 0 | 1.0 | 0.00 | | | | A1:1 | | | |------|--------------|--|-----|------| | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | | AT. T | | | | Obje | ctive Questi | on | | | | 39 | 14121039 | 12 ≡ _ <i>mod</i> 5 | 1.0 | 0.00 | | | | 1.3 | | | | | | 2. 2 | | | | | | 3. 1
4. 0 | | | | | | 4.0 | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | ctive Questi | on | | | | 40 | 14121040 | | 1.0 | 0.00 | | | | Let D be a non zero nxn matrix with n≥2. Which of the following implication is valid | | | | | | 1. det(D)=0 implies rank(D)=0 | | | | | | 2. det(D)=1 implies rank(D)≠1 | | | | | | rank(D)=1 implies det(D) ≠0 | | | | | | 4. rank(D)=n implies det(D) ≠1 | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | A3:3 | | | | | | AJ.J | | | | | | A4:4 | | | | | | | | | | Obje | ctive Questi | on | | | | | 14121041 | | 1.0 | 0.00 | | | | $10 \equiv _mod10$ | | | | | | 4.40 | | | | | | 1.10 | | II. | | | | 2. 2 | | | | | | 2. 2
3. 5 | | | | | | 2. 2 | | | | | | 2. 2
3. 5 | | | | | | 2. 2
3. 5
4. 1 | | | | | | 2. 2
3. 5 | | | | | | A2:2 | | | |-----|---------------|--|-----|------| | | | A3:3 | | | | | | A4:4 | | | | | | | | | | | ective Questi | on | 1.0 | 0.00 | | 42 | 14121042 | Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). | 1.0 | 0.00 | | | | Assertion (A): The eigenvalues of a real symmetric matrix are always real. | | | | | | Reason (R): A real symmetric matrix can be diagonalized by an orthogonal transformation. | | | | | | In light of the above statements, choose the correct answer from the options given below. | | | | | | Both (A) and (R) are true and (R) is the correct explanation of (A) Both (A) and (R) are true but (R) is NOT the correct explanation of (A) (A) is true but (R) is false (A) is false but (R) is true | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obj | ective Questi | on | | | | | 14121043 | | 1.0 | 0.00 | | | | Which are the prime factors
of 24? | | | | | | 1. No prime factors | | | | | | 2. 12,2 | | | | | | 3. 2,3 | | | | | | 4. 3,6 | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | ective Questi | on . | | | | 44 | 14121044 | | 1.0 | 0.00 | | | | | | | | | | | 0! equals 1. 1 2. 0 3. 10 4. Not defined A1: 1 A2: 2 A3: 3 A4: 4 | | | |-------|----|--------------|---|-----|------| | - 1 - | | ctive Questi | on | 1.0 | 0.00 | | | 15 | 14121045 | Given below are two statements: | 1.0 | 0.00 | | | | | | | | | | | | Statement (I): Any two linear equations in three variables has a solution | | | | | | | Statement (II): Every equation of the form ax + by +c has at least one solution. | | | | | | | In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. | | | | | | | Both Statement (I) and Statement (II) are correct | | | | | | | Both Statement (I) and Statement (II) are incorrect | | | | | | | 3. Statement (I) is correct but Statement (II) is incorrect | | | | | | | 4. Statement (I) is incorrect but Statement (II) is correct | A1:1 | | | | | | | A2:2 | | | | | | | A2.2 | | | | | | | A3:3 | | | | | | | | | | | | | | A4:4 | | | | | | | | | | | | | ctive Questi | on . | | | | - | 16 | 14121046 | | 1.0 | 0.00 | Match | I ict | with | liet l | |-------|-------|------|--------| | List-l | List-II | |---------------------|--| | (A)1 | (I). Sum of n^{th} root of unity | | (B).1 | (II). De Moivre number | | (C). roots of unity | (III). Product of 1001th root of unity | | (D). 0 | (IV). Product of 4th root of unity | Choose the correct answer from the options given below: - 1. (A) (II), (B) (I), (C) (IV, (D) (III) - 2. (A) (IV), (B) (III), (C) (II), (D) (I) - 3. (A) (I), (B) (III), (C) (IV), (D) (II) - 4. (A) (III), (B) (IV), (C) (II), (D) (I) - A1:1 - A2:2 - A3:3 - A4:4 | HODI | ective Quest | Oil | | | |------|--------------|-----------------------------|-----|------| | 47 | 14121047 | The canonical form of 16 is | 1.0 | 0.00 | | | | 1. 2 ² .4 | | | | | | 2. 2 ⁴ | | | | | | 3. 16.1 | | | | | | 4. 4.4 | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | | | | | | | ective Quest | | | | | 48 | 14121048 | | 1.0 | 0.00 | | | | The set which consists of more than one equation is classified as | | | |------|---------------|--|---------|------| | | | 1 Custom of Equations | | | | | | System of Equations System of variables | | | | | | 3. System of constants | | | | | | System of coefficients | | | | | | 3 800 (x ★ 600 pb (s 3 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | 10.0 | | | | | | A4:4 | | | | | | 111.7 | | | | Ohie | ective Questi | an and a second | | | | 49 | 14121049 | on the state of th | 1.0 | 0.00 | | | | Let A be a 2x2 real matrix whose characteristic polynomial p/T\ is divisible by T2. Which of the following statements is true? | | | | | | Let A be a 3x3 real matrix whose characteristic polynomial $p(T)$ is divisible by T^2 . Which of the following statements is true? | | | | | | 1. The eigenspace of A for the eigenvalue 0is two-dimensional | | | | | | 2. All the eigenvalues of A are real | | | | | | $^{3} \cdot A^{3} = 0$ | | | | | | 4. A is diagonalizable | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | ective Questi | on | | | | 50 | 14121050 | | 1.0 | 0.00 | | | | The method of eliminating one variable by adding or subtracting two equations with common term is called the | | | | | | method. | | | | | | 1. Elimination | | | | | | 2. Substitution | | | | | | 3. Reduction | | | | | | 4. Division | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | _ | ective Questi | on | | 0.00 | | 51 | 14121051 | | $\ 1.0$ | 0.00 | | | | The subset of linearly dependent 1. is linearly independent 2. is linearly dependent 3. can be linearly independent or dependent 4. is not linearly independent A1:1 A2:2 A3:3 A4:4 | | | |--------|----------------|---|-----|------| | Oh | jective Questi | on. | | | | 52 | 14121052 | A system of linear equation is said to be inconsistent, if it has 1. One solution 2. One or more solutions 3. No solution 4. Infinite solutions A1:1 A2:2 A3:3 A4:4 | 1.0 | 0.00 | | Ob. 53 | jective Questi | on | 1.0 | 0.00 | | | | A system of linear equation is said to be non homogeneous if it is of the form 1. $Ax = b$, $b \neq 0$ 2. $A0 = b$ 3. $0x = b$ 4. $Ax = 0$ | 1.0 | | | | jective Questi | on | | 1. | | 54 | 14121054 | | 1.0 | 0.00 | | | | A Set containing zero vector is 1. Linearly independent 2. Linearly dependent 3. Neither linearly independent nor dependent 4. None of this A1:1 A2:2 A3:3 A4:4 | | | |------|--------------------------|---|-----|------| | | ctive Questi | on | 1.0 | 0.00 | | 55 | 14121055 | Let A be an $n \times n$ matrix. The linear system $Ax = 4x$ has a unique solution if and only if is an invertible matrix. 1. A 2. A+4I 3. A-4I 4. A-2I | 1.0 | 0.00 | | | | A1:1 A2:2 A3:3 A4:4 | | | | Ohie | ctive Questi | on . | | | | | ctive Questi
14121056 | If $A + B = \begin{bmatrix} 1 & 2 \\ 5 & -6 \end{bmatrix}$ and $A - B = \begin{bmatrix} -3 & 4 \\ -1 & -2 \end{bmatrix}$ then $AB = \begin{bmatrix} 1 & 2 \\ -8 & 6 \end{bmatrix}$
2. $\begin{bmatrix} 7 & -5 \\ -8 & 6 \end{bmatrix}$
3. $\begin{bmatrix} 7 & 5 \\ -8 & -6 \end{bmatrix}$
4. $\begin{bmatrix} -7 & 5 \\ 8 & -6 \end{bmatrix}$
A1:1
A2:2
A3:3 | 1.0 | 0.00 | | Obj | ective Questi | on | | | |-----|---------------|--|-----|------| | 57 | 14121057 | | 1.0 | 0.00 | | | | If T: $\mathbb{R}^n \to \mathbb{R}^n$ and if T(x)=0 for every vector x in \mathbb{R}^n then the matrix corresponding to the transformation is: | | | | | | 77 | | | | | | 1. the n × n zero matrix. | | | | | | 2. the n × n identity matrix. | | | | | | 3. An elementary matrix | | | | | | 4. the n × n matrix with all entries equal to 1 | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | | | | | A4:4 | | | | | | | | | | Obj | ective Questi | on | | | | 58 | 14121058 | | 1.0 | 0.00 | | | | If A is an invertible matrix, then A ⁻¹ is invertible and (A ⁻¹) ⁻¹ is | | | | | | T S | | | | | | 1. A | | | | | | 2. A ⁻¹ | | | | | | 3. A ^T | | | | | | 4.1 | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | AJ.J | | | | | | | | | | | | A4:4 | | | | | | | | | | Obi | ective Questi | on | | | | | 14121059 | | 1.0 | 0.00 | | | 1.121009 |
| Match List-I wi | th List-II | | | | |----|--------------------------|---|--|----------------------|-----|------| | | | List-I | List-II | | | | | | | $(A).f(x)=x^2$ | (I). Not a function | | | | | | | $(B).g(x)=e^{x}$ | (II).Bijective | | | | | | | (C).h(x)=x | (III). Surjective | | | | | | | (D). $d(x) = \sqrt{x}$ | (IV).Injective | | | | | | | 1. (A) - (III), (B)
2. (A) - (III), (B)
3. (A) - (I), (B) - | rrect answer from the opt - (IV), (C) - (II), (D) - (I) - (IV), (C) - (I), (D) - (II) - (II), (C) - (IV), (D) - (III) - (III), (C) - (I), (D) - (IV) | ions given below: | | | | | | | | | | | | | ctive Questi
14121060 | | | | 1.0 | 0.00 | | | | 1. A-1B-1
2. AB
3. BA
4. B-1A-1 | n × n invertible matrices th | en (AB)*'is given by | | | | | | A1:1 | | | | | | | | A2:2 | | | | | | | | A3:3 | | | | | | | | A4 : 4 | | | | | | | ctive Questi | on | | | | | | 61 | 14121061 | | | | 1.0 | 0.00 | | | | | | | | | | | | If A is an $m \times n$ matrix, | | | |------|---------------------------|--|-----|------| | | | Then $\dim(row(A)) + \dim(col(A)) + \dim(null(A)) + \dim(null(A^T))$ is | | | | | | 1. n | | | | | | 2. 2n+2m | | | | | | 3. m | | | | | | 4. n+m | | | | | | | | | | | | A1:1 | | | | | | A1:1 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | Obi | | | | | | 62 | ective Questi
14121062 | | 1.0 | 0.00 | | | | The eigen values of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$ are | | | | | | 1. 1,-4,7 | | | | | | 2. 1,4,7 | | | | | | 3. 0,4,7
4. 1,-4,-7 | | | | | | ٦٠٠١, -٦,-١ | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A4:4 | | | | | | A7.7 | | | | Obje | ctive Questi | on | | | | 63 | 14121063 | | 1.0 | 0.00 | | | | If matrix $A = \begin{bmatrix} 4 & 3 \\ 9 & -2 \end{bmatrix}$ has eigen values -5 and 7. The eigenvector is | | | | | | ₁ [1] | | | | | | 1. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 2. $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 3. $\begin{bmatrix} 2 \\ -6 \end{bmatrix}$ | | | | | | 2. [4] | | | | | | 3. [_6] | | | | | | $4. \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2 - 2 | | | | | | A2:2 | | | | | | A3:3 | | | | | | | | | | | | | | | | | | A4:4 | | | |------|--------------|--|-----|------| | | | | | | | | ctive Questi | on | | | | 64 | 14121064 | Vectors whose direction remains unchanged even after applying linear transformation with the matrix are called 1. eigen values 2. eigen vectors | 1.0 | 0.00 | | | | 3. cofactor matrix | | | | | | 4. minor of a matrix | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | Obje | ctive Questi | on . | | | | 65 | 14121065 | Γ1 2 31 | 1.0 | 0.00 | | | | Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 4 \\ -2 & -4 & 1 \end{bmatrix}$ which of the following is an eigen value of A . | | | | | | 1.1 | | | | | | 21 | | | | | | 3. 0
4. 2 | | | | | | .m. 2 | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A4:4 | | | | | | A4.4 | | | | | ctive Questi | on . | | | | 66 | 14121066 | The matrix A is invertible if and only if every eigenvalue is | 1.0 | 0.00 | | | | | | | | | | 1. Positive | | | | | | 2. Non-zero3. Non-negative | | | | | | 4. An integer | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | ···· | | | | | | A3:3 | | | | | | A4:4 | | | | | ective Questi | on | | | |-----|---------------|---|-----|------| | 67 | 14121067 | The algebraic multiplicity of λ is | 1.0 | 0.00 | | | | 1. the least positive integer k such that $(t - \lambda)^k$ is a factor of characteristic polynomial. | | | | | | 2. the least positive integer k such that $(t - \lambda)^k$ is a factor of minimal polynomial. | | | | | | 3. the largest positive integer k such that $(t - \lambda)^k$ is a factor of characteristic polynomial. | | | | | | 4. the largest positive integer k such that $(t - \lambda)^k$ is a factor of minimal polynomial. | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obj | ective Questi | on | | | | 68 | 14121068 | | 1.0 | 0.00 | | | | For all a,b,c are in G , $(a * b) * c = a * (b * c)$ that property is called'? | | | | | | 4. Clasura preparty | | | | | | Closure property Associative Property | | | | | | 3. Inverse property | | | | | | 4. Commutative property | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obj | ective Questi | on | | | | 69 | 14121069 | | 1.0 | 0.00 | | | | 17≡mod 4 | | | | | | 4.2 | | | | | | 1. 2
2. 1 | | | | | | 3. 0 | | | | | | 4. 3 | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | ctive Questi | on | | | | |------|--------------|--------------|--|-----|------| | 70 | 14121070 | | | 1.0 | 0.00 | | | | If a group | has the property that a * b=b * a for every pair of elements a and b, such group is called | | | | | | ii a group | has the property that a "b=b" a for every pair of elements a and b, such group is called | | | | | | 1. Abelian | Group | | | | | | | elian Group | | | | | | | itator Group | | | | | | Solvabl | | | | | | | 4. Sulvabi | e Gloup | A1:1 | A2:2 | | | | | | | | | | | | | | A3:3 | A4:4 | | | | | | | | | | | | Obje | ctive Questi | on | | | | | 71 | 14121071 | | | 1.0 | 0.00 | | | | Match Lis | st-I with List-II | | | | | | | | | | | | | List-I | List-II | (A).R | (I). 2Z | | | | | |)X & | | | | | | | | | | | | | | (B).{1,7,8} | (II). (0,1) | | | | | | | | | | | | | (0) 5 | WO B | | | | | | (C).Q | (III). Power set of | | | | | | | | | | | | | (D). {1} | $(V\rangle, \{a, c, h\}$ | | | | | | (D). (1) | (14). (4) (1) | | | | | | | | | | | | | Choose th | ne correct answer from the options given below: | | | | | | 0110030 ti | to correct answer from the options given bolon. | | | | | | 1. (A) - (IV | /), (B) - (III), (C) - (II), (D) - (I) | | | | | | | , (B) - (IV), (C) - (II), (D) - (III) | | | | | | |), (B) - (III), (C) - (I), (D) - (IV) | | | | | | |), (B) - (IV), (C) - (I), (D) - (III) | A1:1 | | | | | | | | | | | | | | A2:2 | | | | | | | A2.2 | | | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | A4:4 | ctive Questi | on | | | | | 72 | 14121072 | | | 1.0 | 0.00 | 1. Finite Group 2. Infinite Group 3. Not a group 4. None A1:1 A2:2 A3:3 A4:4 | $H=\{1,-1,i,-i\}$ of the complex numbers. Then (H,\times) is | | | | |-----|---------------|--|--|--|-----|------| | | ective Questi | on | | —————————————————————————————————————— | | 0.0- | | 73 | 14121073 | Match their pola | ar coordinate with their rectangular coordinate | 1 | 0.1 | 0.00 | | | | waten their pola | a coordinate with their rectangular coordinate | | | | | | | List-l | List-II | | | | | | | | | | | | | | | (4) (2 =/2) | (1) (4 - 2) | | | | | | | (A).(2, π/3) | (I). (1,√3) | | | | | | | - | | | | | | | | (B).(5, π/4) | $(II).(\frac{5}{\sqrt{2}},\frac{5}{\sqrt{2}})$ | | | | | | | | V2 V2 | | | | | | | 2,000 | | | | | | | | (C). $(2, \frac{5\pi}{4})$ | (III). (-√2,-√2) | | | | | | | 4 | | | | | | | | | | | | | | | | Choose the corr | rect answer from the options given below: | | | | | | | | | | | | | | | 1. (A) - (I), (B) - (| | | | | | | | 2. (A) - (II), (B) -
3. (A) - (III), (B) - | | | | | | | | 4. (A) - (III), (B) - | | | | | | | | 4. (/ t) - (iii), (b) - | - (1), (3) - (11) | A1:1 | | | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | | | A4:4 | | | | | | | | | | | | | | Obj | ective Questi | on | | | | | | 74 | 14121074 | | | 1 | 0. | 0.00 | Match the linear transformation matrices to their interpretations | List-l | | List-II | |--|-----|--------------------------------------| | (A) . $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 0 0 | (I). stretch in the y-axis | | B).[0
0 | 0 1 | (II).uniform stretch in x and y axis | | C). $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 03 | (III). projection in x-axis | | (D). $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$ | 0 4 | (IV).projection in y-axis | Choose the correct answer from the options given below: - 1. (A) (I), (B) (II), (C) (III), (D) (IV) - 2. (A) (II), (B) (III), (C) (IV), (D) (I) - 3. (A) (III), (B) (IV), (C) (I), (D) (II) - 4. (A) (III), (B) (IV), (C) (II), (D) (I) - A1:1 - A2:2 - A3:3 - A4:4 |
14121075 | Match with their defin | itions | 1.0 | |----------|----------------------------------|--|-----| | | List-l | List-II | | | | (A).Eigenvalue | (I). A square matrix is diagonalizable if it has a full set of linearly independent eigenvectors. | | | | (B).Eigenvector | (II).A matrix equation that equates a square matrix times a vector to a scalar multiple of that vector. | | | | (C).Characteristic
Polynomial | (III). A polynomial which is characteristic of a matrix and is used to find its eigenvalues. | | | | (D).Diagonalization | (IV).A scalar associated with a linear system of equations that can be geometrically interpreted as scaling. | | | | Choose the correct a | inswer from the options given below: | | | | | I), (C) - (III), (D) - (I)
V), (C) - (I), (D) - (II) | | | | | I), (C) - (I), (D) - (III) | | | | 4. (A) - (I), (B) - (II) | , (C) - (III), (D) - (IV) | | | | A1:1 | | | | | | | | | | | A3:3
A4:4 | | | |----|----------------|--|-----|------| | Ob | jective Questi | on | | | | 76 | 14121076 | 58 ≡mod 7 | 1.0 | 0.00 | | | | 1. 3
2. 0
3. 1
4. 2 | | | | | | A1:1 | | | | | | A2:2
A3:3 | | | | | | A4:4 | | | | Oh | jective Questi | on. | | | | 77 | 14121077 | Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). | 1.0 | 0.00 | | | | Assertion (A): A matrix is diagonalizable if it has as many distinct eigenvalues as its dimension. Reason (R): If a matrix has distinct eigenvalues, then the corresponding eigenvectors are linearly independent. | | | | | | In light of the above statements, choose the <i>most appropriate</i> answer from the options given below . | | | | | | (A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the correct explanation of (A). Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). (A) is correct but (R) is not correct. | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Ob | jective Questi | on | | | | 78 | 14121078 | | 1.0 | 0.00 | | | | | | | | | | Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). | | | |------|-----------------|--|-----|----------| | | | Assertion (A): Every real symmetric matrix is diagonalizable. | | | | | | Reason (R): The spectral theorem states that every real symmetric matrix can be orthogonally diagonalized. | | | | | | In light of the above statements, choose the <i>most appropriate</i> answer from the options given below . | | | | | | (A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the correct explanation of (A). Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). (A) is correct but (R) is not correct. | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obje | ective Question | on . | | <u> </u> | | 79 | 14121079 | Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). | 1.0 | 0.00 | | | | Assertion (A) : If λ is an eigenvalue of a matrix A , then λ^2 is an eigenvalue of A^2 | | | | | | Reason (R) : The eigenvalues of A^2 are the squares of the eigenvalues of A . | | | | | | In light of the above statements, choose the <i>most appropriate</i> answer from the options given below . | | | | | | (A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the correct explanation of (A). Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). (A) is correct but (R) is not correct. | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | 01. | | | | | | , | 14121080 | on | 1.0 | 0.00 | | - • | | Which of the following statements is true about diagonalizable matrices? | | | | | | All matrices are diagonalizable. | | | | | | A matrix is diagonalizable if it has n distinct eigenvalues. A matrix is diagonalizable if and only if it is invertible. | | | | | | 3. A matrix is diagonalizable if and only if it is invertible.4. A matrix is diagonalizable if and only if it is a zero matrix. | | | | | | T. A That is to diagonalizable if and only if it is a 2610 matrix. | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | |-----------|---------------------------|--|-----|------| | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obj
81 | ective Questi
14121081 | on . | 1.0 | 0.00 | | 01 | 14121081 | For what values of α and β the following simultaneous equations have infinite solutions? | 1.0 | 0.00 | | | | x+y+z=5 | | | | | | x+3y+3z=9 | | | | | | $X+2y+\alpha z=\beta$ | | | | | | 1. 2,7 | | | | | | 2. 3,8 | | | | | | 3. 8,3 | | | | | | 4. 7,2 | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Ohi | ective Questi | on | | | | 82 | 14121082 | | 1.0 | 0.00 | | | | Let A be a 3 ×3 matrix and consider the system of equations AX = $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ then | | | | | | | | | | | | If the system is consistent, then it has a unique solution | | | | | | 2. If A is singular, then the system has infinitely many solutions 3. If the system is consistent, then A ≠ 0 | | | | | | 4. If the system as unique solution, then A is non singular | | | | | | 4. If the System has unique solution, then All Shipping | | | | | | | | | | 11 | A1:1 | | | | | | | | | | | | A1:1
A2:2 | | | | | | A2:2 | | | | | | | | | | | | A2:2
A3:3 | | | | | | A2:2 | | | | | | A2:2 A3:3 A4:4 | | | | | ective Questi | A2:2 A3:3 A4:4 | 10 | 0.00 | | Obj
83 | ective Questi | A2:2 A3:3 A4:4 | 1.0 | 0.00 | | | | A2:2 A3:3 A4:4 | 1.0 | 0.00 | | | | A2:2 A3:3 A4:4 | 1.0 | 0.00 | | | | A2:2 A3:3 A4:4 | 1.0 | 0.00 | | Ohio | ctive Questi | Let A be n×n matrix satisfying A² -7A +12 I=0, then which of the following is true? 1. A is invertible 2. t^2 -7t +12=0 where t=Tr(A) 3. d^2 -7d+12=0 where d=det(A) 4. λ^2 -7 λ +12=0 where λ is eigen value of A A1 : 1 A2 : 2 A3 : 3 A4 : 4 | | | |------|--------------|---|-----|------| | | 14121084 | Let T: R ³ → R ³ be the linear transformation whose matrix wrt to standard basis {e ₁ ,e ₂ ,e ₃ } of R ³ . Then T | 1.0 | 0.00 | | | | 1. maps the subspace spanned by e ₁ and e ₂ into itself. | | | | | | 2. Has distinct eigenvalues | | | | | | 3. Has eigen vectors that span R³ 4. Has a non zero null space | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obje | ctive Questi | on | | | | | 14121085 | | 1.0 | 0.00 | | | | Let V be a vector space of dimension 3 over R $\mathbb R$ Let $T:V\to V$ be a linear transformation given by the matrix A= $\begin{bmatrix} 1 & -1 & 0 \\ 1 & -4 & 3 \\ -2 & 5 & -3 \end{bmatrix}$ with ordered basis $\{V1,V2,V3\}$ of V . Then which of the following is true? $1 \cdot T(V_2) = 0$ $2 \cdot T(V_1 + V_2) = 0$ $3 \cdot T(V_1 + V_2 + V_3) = 0$ $4 \cdot T(V_1 + V_3) = T(V_2)$ | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Ohie | ctive Questi | on. | | | | | 86 | 14121086 | | 1.0 | 0.00 | |-----|------|--------------|--|-----|------| | | | | Let A be an nxn matrix such that the set of all its nonzero eigenvalues has exactly r elements. Which of the following statements is true? | | | | | | | 4 contracts | | | | | | | 1. $\operatorname{rank} A \leq r$.
2. if $r=0$, then $\operatorname{rank} A < n-1$ | | | | | | | 3. A^2 has r distinct nonzero eigenvalues | | | | | | | 4. rank $A \ge r$ | A1:1 | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | A4:4 | | | | | | | | | | | 15 | | ctive Questi | on . | 11 | 11 | | | 87 | 14121087 | The size of the section [7 1] | 1.0 | 0.00 | | | | | The eigen values of the matrix $\begin{bmatrix} 7 & 1 \\ 0 & 3 \end{bmatrix}$ are | | | | | | | 1. 7,3 | | | | | | | 2. 1,0 | | | | | | | 3. 1,3 | | | | | | | 4. 10,0 | A1:1 | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | A3:3 | | | | | | | A4.4 | | | | | | | A4:4 | | | | | Ob: | ctive Questi | | | | | 115 | | 14121088 | on | 1.0 | 0.00 | | | | | The two equations that have no values to satisfy both equations then this is called | | | | | | | 1. Consistent system | | | | | | | 2. Inconsistent system | | | | | | | 3. Solution system | | | | | | | 4.
Constant system | A1:1 | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | A4:4 | | | | | | | | | | | 1 | Obje | ctive Questi | on | | | | 89 | 14121089 | | 1.0 | 0.00 | |----|----------------|---|-----|------| | | | What is the solution to the system of equations? | | | | | | y=3x-8 | | | | | | y=4-x | | | | | | | | | | | | 1. (1,3)
2. (3,1) | | | | | | 3. (-3,1) | | | | | | 4. (3,-1) | | | | | | SEC ADDICE | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | 90 | jective Questi | on | 1.0 | 0.00 | | | | A system of linear equation is said to be consistent, if it has | | | | | | 1. No solution | | | | | | 2. One solution | | | | | | 3. Infinite solutions | | | | | | 4. One or more solutions | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A4:4 | | | | | | A4:4 | | | | Oh | jective Questi | on | | | | 91 | | | 1.0 | 0.00 | | | | The solution of the simple homogeneous system $x + 5y - z = 0$ is | | | | | | 1. (9,2,2) | | | | | | 2. (1,1,1) | | | | | | 3. (5,-1,0) | | | | | | 4. (5,0,1) | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A2 . 2 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | ective Questi | on | | | |------|---------------|--|-----|------| | 92 | 14121092 | Which of the following set of vectors in R ⁿ is linearly independent | 1.0 | 0.00 | | | | 1. {(1,2),(1,3)} | | | | | | 2. {(2,4),(4,8)} | | | | | | 3. {(1,0),(0,1),(5,2)}
4. {(1,0),(5,0)} | | | | | | | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | | | | | | | ective Questi | on | 1.0 | 0.00 | | 93 | 14121093 | Write matrix corresponding to the following linear transformations | 1.0 | 0.00 | | | | $y_1 = 2x_1 - x_2 - x_3$ | | | | | | $y_2 = 3x_1$ | | | | | | $y_3 = x_1 + x_2$ | | | | | | $1. \begin{bmatrix} 2 & -1 & -1 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{bmatrix}$ | | | | | | | | | | | | $ \begin{bmatrix} 2 & -1 & -1 \\ 3 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} $ | | | | | | $\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & -1 & -1 \end{bmatrix}$ | | | | | | $ \begin{bmatrix} 2 & -1 & -1 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix} $ | | | | | | | | | | | | $ \begin{bmatrix} 2 & -1 & -1 \\ 0 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix} $ | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Ohio | ective Questi | on | | | | | 14121094 | | 1.0 | 0.00 | | | | If A is an m ×n matrix, then the codomain of the transformation corresponding to A is: | | | | | | 1. R ⁿ 2. R ^{m+n} | | | | | | 3. R ^{mn} | | | | | | 4. R ^m | | | | | | | | | | | | A1:1 A2:2 A3:3 | | | |----|---------------|---|-----|-------| | | | A4:4 | | | | | | | | | | | ective Questi | on | | 10.00 | | 95 | 14121095 | | 1.0 | 0.00 | | | | If A is an $n \times n$ invertible square matrix then which of the following is true? | | | | | | | | | | | | 1. Then A has exactly n - 1 pivot positions | | | | | | 2. The columns of A form a linearly independent set. | | | | | | 3. A is not equivalent to the $n \times n$ identity matrix. | | | | | | 4. A ^T is not an invertible matrix. | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | ective Questi | on | 1.0 | 0.00 | | 96 | 14121096 | | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ [1 & 0 & 0] $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ 1. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ 2. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ 3. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ [4 & 0 & 0] $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ [4 & 0 & 0] $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ | 1.0 | 0.00 | | | | Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $ | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Al: 1 | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1
\end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Al: 1 | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1 | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Al: 1 | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ A1: 1 A2: 2 A3: 3 | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1 | 1.0 | 0.00 | | | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ A1: 1 A2: 2 A3: 3 | 1.0 | 0.00 | | 96 | | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1 A2:2 A3:3 A4:4 | 1.0 | 0.00 | | 96 | 14121096 | Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1 A2:2 A3:3 A4:4 | | 0.00 | | | | If A is an invertible square matrix then; 1. $(A^{T})^{-1} = (A^{-1})^{T}$ 2. $(A^{T})^{T} = (A^{-1})^{T}$ 3. $(A^{T})^{-1} = (A^{-1})^{-1}$ 4. $(A^{T})^{-1} = A$ | | | |--------|---------------|---|-----|------| | | | A2:2 A3:3 A4:4 | | | | | | | | | | Ob | ective Questi | on | | | | 98 | 14121098 | What is the largest possible rank of a 7×2 matrix? | 1.0 | 0.00 | | | | 1. 1
2. 2 | | | | | | 3. 4 | | | | | | 4.7 | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | | | | | | Obj | 14121099 | on | 1.0 | 0.00 | | Obj 99 | ective Questi | | 1.0 | 0.00 | | Match List | -I with | liet_l | |------------|---------|--------| | List-II | |----------| | (I).5432 | | (11).40 | | (111). 1 | | (IV).899 | | | Choose the correct answer from the options given below: - 1. (A) (III), (B) (I), (C) (IV), (D) (II) - 2. (A) (I), (B) (II), (C) (III), (D) (IV) - 3. (A) (IV), (B) (I), (C) (II), (D) (III) - 4. (A) (III), (B) (II), (C) (IV), (D) (I) - A1:1 - A2:2 - A3:3 - A4:4 | 100 | 14121100 | Which of the following matrices has the same row reduced echelon form as of the matrix | 1.0 | 0.00 |) | |-----|----------|---|-----|------|---| | | | $\begin{bmatrix} 4 & 8 & 4 \\ 3 & 6 & 1 \\ 2 & 4 & 0 \end{bmatrix}$ | | | | | | | 1. $\begin{bmatrix} 1 & 2 & 0 \\ 10 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 1 & 0 \\ 10 & 0 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ | | | | | | | A1:1 | | | | | | | A2:2 | | | | | | | A3:3 | | | | | | | A4:4 | | | |