PREVIEW QUESTION BANK

Module Name : cec24-ma02 Algebra-ENG Exam Date : 18-May-2024 Batch : 09:00-12:00

	Question Body and Alternatives Marks	M	gativ Iarks
jective Questi	n	1.0	
	What is the polar form of $z = 1 + i$? 1. $z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ 2. $z = 2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ 3. $z = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ 4. $z = \sqrt{2}(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ A1: 1 A2: 2		
	A4:4		
jective Questi	n	1.0	
	Which of the following statements are correct? (A). Suppose V is a complex vector space. Then the linear operator T on V has atleast one eigenvalue. (B). Suppose v_1, v_2, \ldots, v_n are nonzero eigenvectors of a linear operator T belonging to distinct eigen values λ_1 , $\lambda_2, \ldots, \lambda_n$. Then v_1, v_2, \ldots, v_n are linearly dependent. (C). The geometric multiplicity of an eigenvalue λ of T does not exceed its algebraic multiplicity. (D). A linear operator T is not a zero of its characteristic polynomial. 1. (B) and (D) only. 2. (A), (B), (C) and (D). 3. (A), (B) and (C) only. 4. (A) and (C) only. A1:1 A2:2 A3:3		
jective Questi			

Match the following

List-I		List-II
(A). [5	3 10	(I). $\lambda^2 - 2\lambda + I$
(B). [7	${-1 \choose 2}$	(II). $\lambda^2 - 9\lambda + 20$
(C). [5 ₄	-2 -4	(III). $\lambda^2 - 15\lambda + 44$
(D). $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 1	$(IV) \cdot \lambda^2 - \lambda - 12$

Choose the correct answer from the options given below:

- 1. (A) (III), (B) (II), (C) (IV), (D) (I)
- 2. (A) (I), (B) (III), (C) (IV), (D) (II)
- 3. (A) (II), (B) (III), (C) (IV), (D) (I)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

4	14121004		1.0	0.00	Į
		The Polar coordinates and Cartesian coordinates are same for			
		1. (1,0)			
		2. (2,0)			
		3. (3,0)			
		4. (4,0)			
		A1:1			
		A2:2			
		A3:3			
		A). J			
		A.A A			
		A4:4			
O	bjective Questi	on			

5	14121005	1.0	0.00

		The function $f: C/\{0\} \to C$ such that $f(z) = \arg z$ is a 1. Single valued function 2. Multivalued function 3. Continuous function 4. Differentiable A1: 1 A2: 2 A3: 3 A4: 4		
Obje	ective Questi	on .		
6	14121006	Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $f(\lambda) = 2\lambda^2 - 3\lambda + 5$ and $g(\lambda) = \lambda^2 - 5\lambda - 2$. List-I List-II (A). [A] (I). $\begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$ (B) $f(A)$ (II). -2 (C). $g(A)$ (III). $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (D). A^2 (IV). $\begin{bmatrix} 16 & 14 \\ 21 & 37 \end{bmatrix}$ Choose the correct answer from the options given below: 1. (A) - (I), (B) - (I), (C) - (IV), (D) - (III) 2. (A) - (IV), (B) - (I), (C) - (III), (D) - (II) 3. (A) - (II), (B) - (I), (C) - (III), (D) - (II) 4. (A) - (II), (B) - (IV), (C) - (III), (D) - (II) A1 : 1 A2 : 2 A3 : 3	1.0	0.00
		A4:4		
Obje	ective Questi	on		
7	14121007		1.0	0.00

		Let $D_k=kI$, where k is a scalar, then which of the following options are correct?		
		(A). $D_k A = kA$		
		(B) $BD_k = kB$		
		$(C). D_k + D_{k'} = D_{kk'}$		
		$(D).\ D_k D_{k'} = D_{k+k'}$		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (D) only		
		2. (B) and (D) only.		
		3. (A) and (B) only		
		4. (A), (C) and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi	on	10	0.00
8	14121008	Convert the rectangular or Cartesian coordinate (2,2) into polar coordinate.	1.0	0.00
		$(2,\frac{\pi}{3})$		
		1. $(2, \frac{\pi}{3})$ 2. $(2\sqrt{2}, \frac{\pi}{4})$ 3. $(2\sqrt{2}, \frac{\pi}{3})$		
		2. 4		
		$_{3.}(2\sqrt{2},\frac{\pi}{3})$		
		$\frac{\pi}{4}$ (2, $\frac{\pi}{4}$)		
		4. \(\frac{4}{2} \)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
Ohi	ective Questi	on		
9	14121009		1.0	0.00
				11 11

Find the polar representation of the number $z = -1 + i\sqrt{3}$.

- 1. $2(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3})$ 2. $\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$ 3. $2(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$ 4. $\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$

- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

10 14121010

Match List-I with List-II

List-l		List-II
(A). $(A_1 A_3 A_2)^2$	-1	(I). -3
(B). $(A_1 A_2 A_3)^2$	-1	(11).4
(C). Trace of $\begin{bmatrix} 2\\3\\4 \end{bmatrix}$	-5 8 -6 -7 0 -1	$\begin{bmatrix} 7 \\ 1 \end{bmatrix} (III). \ A_2^{-1} A_3^{-1} A_1^{-1}$
(D). Trace of $\begin{bmatrix} 6 \\ 3 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -2 \end{bmatrix}$	(IV). $A_3^{-1}A_2^{-1}A_1^{-1}$

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (III), (C) (II), (D) (IV)
- 2. (A) (III), (B) (II), (C) (I), (D) (IV)
- 3. (A) (II), (B) (I), (C) (IV), (D) (III)
- 4. (A) (III), (B) (IV), (C) (I), (D) (II)
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

14121011 11

1.0 0.00

1.0 0.00

Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).

Assertion (A): Determinant of $\begin{bmatrix} -2 & 6 \\ 3 & -9 \end{bmatrix} = 0$

Reason (R): In a 2 x 2 matrix if one row is a scalar multiple of the other then determinant will be zero.

In light of the above statements, choose the correct answer from the options given below.

- 1. Both (A) and (R) are true and (R) is the correct explanation of (A).
- 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- 3. (A) is true but (R) is false.
- 4. (A) is false but (R) is true.
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question

12 14121012 Find the polar representation of the number Z = -1 - i.

- $1.\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}$

- $\begin{array}{c}
 4 & 4 \\
 2 \cdot \sqrt{2(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4})} \\
 3 \cdot 2(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}) \\
 4 \cdot \sqrt{2(\cos\frac{5\pi}{2} + i\sin\frac{5\pi}{2})}
 \end{array}$
- A1:1
- A2:2
- A3:3
- A4:4

Objective Question 13 14121013

The collection of complex 100 th root of unity is a
Group but not abelian
2. Group but not cyclic
3. Not a group

A1:1

4. Cyclic group

A2:2

1.0 0.00

1.0 0.00

		A3:3		
		A4:4		
_	ctive Questi		1.0	0.00
14	14121014	Match List-I with List-II	1.0	0.00
		List-I List-II		
		$r_1 - 11^{-1}$ $[3 - 5]$		
		$ (A) \cdot \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}^{-1} (I) \cdot \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} $		
		$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}^{-1} & \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix}$		
		(C) $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}^{-1}$ (III) does not exist		
		1 [-5 3]		
		$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}^{-1} \begin{bmatrix} V\rangle \cdot \begin{bmatrix} -5 & \frac{3}{2} \\ \frac{2}{2} & -1 \end{bmatrix}$		
		Choose the correct answer from the options given below:		
		1. (A) - (I), (B) - (III), (C) - (IV)		
		2. (A) - (II), (B) - (I), (C) - (IV), (D) - (III)		
		3. (A) - (I), (B) - (IV), (C) - (II), (D) - (III)		
		4. (A) - (II), (B) - (IV), (C) - (I), (D) - (III)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Questi	on		
15	14121015	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	1.0	0.00
		Assertion (A): If G is a finite group of order n , then the order of any element $a \in G$; is a divisor of		
		Reason (R): The order of each subgroup of a finite group G is a divisor of the order of G .		
		In light of the above statements, choose the correct answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A)		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A)		
		3. (A) is true but (R) is false 4. (A) is false but (R) is true		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Obi	ective Questi	on		
	14121016	Sum of the absolute values of all the n^{th} roots of unity is,	1.0	0.00
		1.1		
		2. 0		
		31 4. <i>n</i>		
		4. <i>1</i> 1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Questi	on		
17			1.0	0.00
		Let m and n be positive integers, then the common roots of unity shared by the m^{th} and n^{th} roots of unity are precisely the		
		$k^{ extit{th}}$ roots of unity where k is,		
		1. gcd (m,n)		
		2. mn		
		3. m		
		4. n		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Questi	on		
18	14121018		1.0	0.00
		Find the value of $(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6})^{18}$		
		1.1		
		2.0		
		3. 1/2		
		4. 18		
		A1:1		
		A2:2		
		A3:3		

		A4:4		
Ohie	ective Questi	on .		
19	14121019		1.0	0.00
		If $x + \frac{1}{x} = 2\cos\theta$, then find the value of $x^{12} + \frac{1}{x^{12}}$		
		1. $2\cos 6\theta$		
		2. cos6θ		
		3. cos120		
		4. 2cos12θ		
		A1:1		
		A1.1		
		42.2		
		A2:2		
		A3:3		
		A4:4		
Obje	14121020	on	1.0	0.00
20	14121020		1.0	0.00
		Which of the following statements are correct?		
		(A). A non-empty subset G' of a group G is a subgroup of G if and only if for all $a,b \in G'$, $a^{-1} \circ b \in G'$.		
		(B).Let a be an element of a group G . Then $G' = \{a^n : n \in I\}$ of all integral powers of a is a subgroup of G .		
		(C). If S is any set of subgroups of a group G , the intersection of these subgroups is also a subgroup of G .		
		(D). Every subgroup of a cyclic group need not be a cyclic group.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (D) only.		
		2. (B) and (D) only.		
		3. (A), (C) and (D).		
		4. (A), (B) and (C) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi	on .		
21	14121021		1.0	0.00

Match List-I with List-II

		List-l	List-II			
		(A)."is a factor of" on N	(I). is reflexive, symmetric and transitive.			
		(B)."costs within one dollar of" for men's shoes	(II). is not reflexive.			
		(C). "is the square of" on N	(III). is reflexive and symmetricbut not transitive.			
		(D). "Has the same number of vertices as " for the set of all polygons in a plane is reflexive, symmetric and transitive.				
		Choose the correct answer from the opti 1. (A) - (II), (B) - (I), (C) - (III), (D) - (IV) 2. (A) - (IV), (B) - (I), (C) - (III), (D) - (II) 3. (A) - (IV), (B) - (III), (C) - (II), (D) - (I) 4. (A) - (III), (B) - (IV), (C) - (II), (D) - (I)	ons given below:			
		A1:1				
		A2:2				
		A3:3				
		A4:4				
Obje	ective Questi	on				
22	14121022	Let z be a complex number such that z	= 4 and $arg z = \frac{5\pi}{6}$. What is z equal to?	1.0	0 0	0.00
		1. $-2\sqrt{3} + 2i$				
		$ 2 \cdot 2\sqrt{3} + 2i $ $ 3 \cdot 2\sqrt{3} - 2i $ $ 4 \cdot -\sqrt{3} + i $				
		$3. \ 2\sqrt{3} - 2i$				
		$4 \cdot -\sqrt{3} + i$				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
	ective Questi	on				
23	14121023			1.0	0	0.00

		Which of the relations on {0,1,2,3} is an equivalence relation? 1. {(0,0),(1,1),(2,2),(3,3)} 2. {(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)} 3. {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0)} 4. {(0,0),(2,3),(0,2),(1,1),(2,2)} A1:1 A2:2 A3:3		
		A4:4		
Obi	ective Questi	on		
	14121024	Which of the following are correct? (A). $x \to x + 2$ is a mapping of \mathbb{N} into, but not onto, \mathbb{N} . (B). $x \to 3x - 2$ is a one-to-one mapping of \mathbb{Q} onto \mathbb{Q} . (C). $x \to x^3 - 3x^2 - x$ is both one-to-one and onto from \mathbb{R} to \mathbb{R} . (D). If α is a one-to-one mapping of a set S onto T , then α has exactly two inverses. Choose the correct answer from the options given below: 1. (A), (B) and (C) only. 2. (A) and (B) only. 3. (A), (B) and (D). 4. (A), (C) and (D) only. A1:1 A2:2	1.0	0.00
OI.		A4:4		
<u>Обј</u> 25	14121025		1.0	0.00

		Given the mappings : $lpha$: $n o n^2 + 1$ and eta : $n o 3n + 2$ of $\mathbb N$ into $\mathbb N$. Then;		
		List-I List-II		
		$(A) \cdot \alpha \alpha$ $(I) \cdot 9n + 8$		
		(B). $\alpha\beta$ (II). $9n^2 + 12n + 5$		
		(C). $\beta\beta$ (III). $3n^2 + 5$		
		(D). $\beta \alpha$ (IV) $n^4 + 2n^2 + 2$		
		Choose the correct answer from the options given below:		
		1. (A) - (IV), (B) - (II), (C) - (I), (D) - (III) 2. (A) - (II), (B) - (I), (C) - (IV), (D) - (III)		
		3. (A) - (I), (B) - (III), (C) - (IV), (D) - (II)		
		4. (A) - (III), (B) - (IV), (C) - (I)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi	on		
Obje	ective Question 14121026	on	1.0	0.00
		on	1.0	0.00
			1.0	0.00
		If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64	1.0	0.00
		If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8	1.0	0.00
		If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64	1.0	0.00
		If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8	1.0	0.00
		If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8	1.0	0.00
		If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9	1.0	0.00
		If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9	1.0	0.00
		If $P = \{1,3\}$, $Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9	1.0	0.00
		If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 A2: 2 A3: 3	1.0	0.00
26	14121026	If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 A2: 2 A3: 3		
26	14121026	If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 Al: 1 A2: 2 A3: 3 A4: 4		0.00
26 Obj.	14121026	If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 A2: 2 A3: 3		
26 Obj.	14121026	If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 A1: 1 $A2: 2$ $A3: 3$ $A4: 4$ In a second of the real function $f(x) = \sqrt{x^2 - 4}$.		
26	14121026	If $P = \{1,3\}, Q = \{2,3,5\}$, find the number of relations from P to Q . 1. 6 2. 64 3. 8 4. 9 Al: 1 A2: 2 A3: 3 A4: 4		

A1:1

		A3:3 A4:4		
Obje	ective Questi	on		
28	14121028		1.0	0.00
	11121020	Find the range of the function $f(x) = \frac{1}{1-x^2}$.		0.00
		1-x-		
		1. $(-\infty,0) \cup [1,\infty)$		
		2. {0}		
		3. [1,∞)		
		$4. (-\infty, \infty)$		
		4. (30,30)		
		A1:1		
		A1.1		
		A2:2		
		12.2		
		A3:3		
		A4:4		
	ective Questi	on		
29	14121029		1.0	0.00
		Which of the following statements are correct?		
		(A). "Is similar to" for the set T of all triangles in a plane is an equivalence relation.		
		(B). " \subseteq " for the set of sets $S = \{A, B, C,\}$ Is an equivalence relation.		
		(C). "Has the same radius as" for the set of all circles in a plane is an equivalence relation.		
		(D). "≤" for the set R is an equivalence relation.		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A) and (D) only.		
		2. (A) and (C) only.		
		3. (A), (B) and (D).		
		4. (A), (C) and (D) only.		
		i. Vy, to j and to j only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obio	ective Questi	on .		
	14121030		1.0	0.00
II.	11 1		H	II.

		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): Since $(\alpha\beta)(\beta^{-1}\circ\alpha^{-1})=Identity\ function, (\beta^{-1}\circ\alpha^{-1})$ is the inverse of $\alpha\beta$.		
		Reason (R): If α is a one-to-one mapping of a set S onto T , then α has a unique inverse and conversely.		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		 Both (A) and (R) are true and (R) is the correct explanation of (A) Both (A) and (R) are true but (R) is NOT the correct explanation of (A) (A) is true but (R) is false (A) is false but (R) is true 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obie	ective Questi	on		
	14121031	The solution to $f(x) = f^{-1}(x)$ are	1.0	0.00
		1. no solutions in any case		
		2. same as solution to $f(x) = x$		
		3. infinite number of solution for every case		
		unique solution for every case		
		A1:1		
		A2 - 2		
		A2:2		
		A2.2		
		A3:3		
		A.A A		
		A4:4		
-				
Оbје 32	14121032	on	1.0	0.00
32	17121032	If cardinality of $(A \cup B)$ = cardinality of A + cardinality of B . This means that	1.0	0.00
		4. A is a subset of D		
		 A is a subset of B. B is a subset of A. 		
		3. A and B are disjoint.		
		4. A and B are of same cardinality.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
			11	11

	ctive Questi	on		
33	14121033	The cardinality of power set of {0,1,2,3}	1.0	0.00
		4.40		
		1. 16		
		2. 2		
		3. 4		
		4. 8		
		A1:1		
		A2:2		
		A3:3		
		A3 . 3		
		A4:4		
	bjective Question			
34	14121034	Find the quotient when -45 is divided by 7.	1.0	0.00
		Find the quotient when —43 is divided by 7.		
		17		
		26		
		3.0		
		4.7		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ође 35	ctive Questi	on	1.0	0.00
33	14121033	Given below are two statements:	1.0	0.00
		Statement (I): The sum of n th root of unity is zero		
		Statement (II): ω and ω^2 are the roots of $x^2 + x + 1 = 0$		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		Both Statement (I) and Statement (II) are correct		
		2. Both Statement (I) and Statement (II) are incorrect		
		3. Statement (I) is correct but Statement (II) is incorrect		
		4. Statement (I) is incorrect but Statement (II) is correct		
		A1:1		
		A2:2		
		A3:3	II	

		A4:4		
Obje	ective Questi	on		
36	ective Questi 14121036	The other name of base-10 representation is 1. Octal representation 2. Hexadecimal representation 3. Decimal representation 4. Deca representation A1:1 A2:2 A3:3 A4:4	1.0	0.00
	ective Questi	on .		
37	14121037	Match List-I with List-II List-II (A) $g \circ f(x)$ (I) $g^{-1} \circ f^{-1}$ (B) $f(g(y)) = y$ (II) $g(f(x))$ (C). $(g \circ f)^{-1}$ (III). $f^{-1} = g$ (D). $(f \circ g)^{-1}$ (IV). $f^{-1} \circ g^{-1}$ Choose the correct answer from the options given below: 1. (A) - (I), (B) - (II), (C) - (II), (D) - (IV) 2. (A) - (II), (B) - (II), (C) - (IV), (D) - (IV) 3. (A) - (II), (B) - (III), (C) - (IV), (D) - (IV) 4. (A) - (III), (B) - (IV), (C) - (II), (D) - (IV) A1 : 1 A2 : 2 A3 : 3 A4 : 4	1.0	0.00
Obje 38	taliana la	Find the <i>gcd</i> (1,24) 1. 1 2. 24 3. 25 4. 0	1.0	0.00

		A1:1		
		A2:2		
		A3:3		
		A4:4		
		AT. T		
Obje	ctive Questi	on		
39	14121039	12 ≡ _ <i>mod</i> 5	1.0	0.00
		1.3		
		2. 2		
		3. 1 4. 0		
		4.0		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ctive Questi	on		
40	14121040		1.0	0.00
		Let D be a non zero nxn matrix with n≥2. Which of the following implication is valid		
		1. det(D)=0 implies rank(D)=0		
		2. det(D)=1 implies rank(D)≠1		
		 rank(D)=1 implies det(D) ≠0 		
		4. rank(D)=n implies det(D) ≠1		
		A1:1		
		A2:2		
		A3:3		
		AJ.J		
		A4:4		
Obje	ctive Questi	on		
	14121041		1.0	0.00
		$10 \equiv _mod10$		
		4.40		
		1.10		II.
		2. 2		
		2. 2 3. 5		
		2. 2		
		2. 2 3. 5		
		2. 2 3. 5 4. 1		
		2. 2 3. 5		

		A2:2		
		A3:3		
		A4:4		
	ective Questi	on	1.0	0.00
42	14121042	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	1.0	0.00
		Assertion (A): The eigenvalues of a real symmetric matrix are always real.		
		Reason (R): A real symmetric matrix can be diagonalized by an orthogonal transformation.		
		In light of the above statements, choose the correct answer from the options given below.		
		 Both (A) and (R) are true and (R) is the correct explanation of (A) Both (A) and (R) are true but (R) is NOT the correct explanation of (A) (A) is true but (R) is false (A) is false but (R) is true 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Questi	on		
	14121043		1.0	0.00
		Which are the prime factors of 24?		
		1. No prime factors		
		2. 12,2		
		3. 2,3		
		4. 3,6		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi	on .		
44	14121044		1.0	0.00

			0! equals 1. 1 2. 0 3. 10 4. Not defined A1: 1 A2: 2 A3: 3 A4: 4		
- 1 -		ctive Questi	on	1.0	0.00
	15	14121045	Given below are two statements:	1.0	0.00
			Statement (I): Any two linear equations in three variables has a solution		
			Statement (II): Every equation of the form ax + by +c has at least one solution.		
			In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
			Both Statement (I) and Statement (II) are correct		
			Both Statement (I) and Statement (II) are incorrect		
			3. Statement (I) is correct but Statement (II) is incorrect		
			4. Statement (I) is incorrect but Statement (II) is correct		
			A1:1		
			A2:2		
			A2.2		
			A3:3		
			A4:4		
		ctive Questi	on .		
-	16	14121046		1.0	0.00

Match	I ict	with	liet l

List-l	List-II
(A)1	(I). Sum of n^{th} root of unity
(B).1	(II). De Moivre number
(C). roots of unity	(III). Product of 1001th root of unity
(D). 0	(IV). Product of 4th root of unity

Choose the correct answer from the options given below:

- 1. (A) (II), (B) (I), (C) (IV, (D) (III)
- 2. (A) (IV), (B) (III), (C) (II), (D) (I)
- 3. (A) (I), (B) (III), (C) (IV), (D) (II)
- 4. (A) (III), (B) (IV), (C) (II), (D) (I)
- A1:1
- A2:2
- A3:3
- A4:4

HODI	ective Quest	Oil		
47	14121047	The canonical form of 16 is	1.0	0.00
		1. 2 ² .4		
		2. 2 ⁴		
		3. 16.1		
		4. 4.4		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest			
48	14121048		1.0	0.00

		The set which consists of more than one equation is classified as		
		1 Custom of Equations		
		System of Equations System of variables		
		3. System of constants		
		System of coefficients		
		3 800 (x ★ 600 pb (s 3 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		A1:1		
		A2:2		
		A3:3		
		10.0		
		A4:4		
		111.7		
Ohie	ective Questi	an and a second and		
49	14121049	on the state of th	1.0	0.00
		Let A be a 2x2 real matrix whose characteristic polynomial p/T\ is divisible by T2. Which of the following statements is true?		
		Let A be a 3x3 real matrix whose characteristic polynomial $p(T)$ is divisible by T^2 . Which of the following statements is true?		
		1. The eigenspace of A for the eigenvalue 0is two-dimensional		
		2. All the eigenvalues of A are real		
		$^{3} \cdot A^{3} = 0$		
		4. A is diagonalizable		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Questi	on		
50	14121050		1.0	0.00
		The method of eliminating one variable by adding or subtracting two equations with common term is called the		
		method.		
		1. Elimination		
		2. Substitution		
		3. Reduction		
		4. Division		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
_	ective Questi	on		0.00
51	14121051		$\ 1.0$	0.00

		The subset of linearly dependent 1. is linearly independent 2. is linearly dependent 3. can be linearly independent or dependent 4. is not linearly independent A1:1 A2:2 A3:3 A4:4		
Oh	jective Questi	on.		
52	14121052	A system of linear equation is said to be inconsistent, if it has 1. One solution 2. One or more solutions 3. No solution 4. Infinite solutions A1:1 A2:2 A3:3 A4:4	1.0	0.00
Ob. 53	jective Questi	on	1.0	0.00
		A system of linear equation is said to be non homogeneous if it is of the form 1. $Ax = b$, $b \neq 0$ 2. $A0 = b$ 3. $0x = b$ 4. $Ax = 0$	1.0	
	jective Questi	on		1.
54	14121054		1.0	0.00

		A Set containing zero vector is 1. Linearly independent 2. Linearly dependent 3. Neither linearly independent nor dependent 4. None of this A1:1 A2:2 A3:3 A4:4		
	ctive Questi	on	1.0	0.00
55	14121055	Let A be an $n \times n$ matrix. The linear system $Ax = 4x$ has a unique solution if and only if is an invertible matrix. 1. A 2. A+4I 3. A-4I 4. A-2I	1.0	0.00
		A1:1 A2:2 A3:3 A4:4		
Ohie	ctive Questi	on .		
	ctive Questi 14121056	If $A + B = \begin{bmatrix} 1 & 2 \\ 5 & -6 \end{bmatrix}$ and $A - B = \begin{bmatrix} -3 & 4 \\ -1 & -2 \end{bmatrix}$ then $AB = \begin{bmatrix} 1 & 2 \\ -8 & 6 \end{bmatrix}$ 2. $\begin{bmatrix} 7 & -5 \\ -8 & 6 \end{bmatrix}$ 3. $\begin{bmatrix} 7 & 5 \\ -8 & -6 \end{bmatrix}$ 4. $\begin{bmatrix} -7 & 5 \\ 8 & -6 \end{bmatrix}$ A1:1 A2:2 A3:3	1.0	0.00

Obj	ective Questi	on		
57	14121057		1.0	0.00
		If T: $\mathbb{R}^n \to \mathbb{R}^n$ and if T(x)=0 for every vector x in \mathbb{R}^n then the matrix corresponding to the transformation is:		
		77		
		1. the n × n zero matrix.		
		2. the n × n identity matrix.		
		3. An elementary matrix		
		4. the n × n matrix with all entries equal to 1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Questi	on		
58	14121058		1.0	0.00
		If A is an invertible matrix, then A ⁻¹ is invertible and (A ⁻¹) ⁻¹ is		
		T S		
		1. A		
		2. A ⁻¹		
		3. A ^T		
		4.1		
		A1:1		
		A2:2		
		A3:3		
		AJ.J		
		A4:4		
Obi	ective Questi	on		
	14121059		1.0	0.00
	1.121009			

		Match List-I wi	th List-II			
		List-I	List-II			
		$(A).f(x)=x^2$	(I). Not a function			
		$(B).g(x)=e^{x}$	(II).Bijective			
		(C).h(x)=x	(III). Surjective			
		(D). $d(x) = \sqrt{x}$	(IV).Injective			
		1. (A) - (III), (B) 2. (A) - (III), (B) 3. (A) - (I), (B) -	rrect answer from the opt - (IV), (C) - (II), (D) - (I) - (IV), (C) - (I), (D) - (II) - (II), (C) - (IV), (D) - (III) - (III), (C) - (I), (D) - (IV)	ions given below:		
	ctive Questi 14121060				1.0	0.00
		1. A-1B-1 2. AB 3. BA 4. B-1A-1	n × n invertible matrices th	en (AB)*'is given by		
		A1:1				
		A2:2				
		A3:3				
		A4 : 4				
	ctive Questi	on				
61	14121061				1.0	0.00

		If A is an $m \times n$ matrix,		
		Then $\dim(row(A)) + \dim(col(A)) + \dim(null(A)) + \dim(null(A^T))$ is		
		1. n		
		2. 2n+2m		
		3. m		
		4. n+m		
		A1:1		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi				
62	ective Questi 14121062		1.0	0.00
		The eigen values of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 7 \end{bmatrix}$ are		
		1. 1,-4,7		
		2. 1,4,7		
		3. 0,4,7 4. 1,-4,-7		
		٦٠٠١, -٦,-١		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A7.7		
Obje	ctive Questi	on		
63	14121063		1.0	0.00
		If matrix $A = \begin{bmatrix} 4 & 3 \\ 9 & -2 \end{bmatrix}$ has eigen values -5 and 7. The eigenvector is		
		₁ [1]		
		1. $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 2. $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 3. $\begin{bmatrix} 2 \\ -6 \end{bmatrix}$		
		2. [4]		
		3. [_6]		
		$4. \begin{bmatrix} 0 \\ 1 \end{bmatrix}$		
		A1:1		
		A2 - 2		
		A2:2		
		A3:3		

		A4:4		
	ctive Questi	on		
64	14121064	Vectors whose direction remains unchanged even after applying linear transformation with the matrix are called 1. eigen values 2. eigen vectors	1.0	0.00
		3. cofactor matrix		
		4. minor of a matrix		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Questi	on .		
65	14121065	Γ1 2 31	1.0	0.00
		Consider the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & -1 & 4 \\ -2 & -4 & 1 \end{bmatrix}$ which of the following is an eigen value of A .		
		1.1		
		21		
		3. 0 4. 2		
		.m. 2		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4.4		
	ctive Questi	on .		
66	14121066	The matrix A is invertible if and only if every eigenvalue is	1.0	0.00
		1. Positive		
		2. Non-zero3. Non-negative		
		4. An integer		
		A1:1		
		A2:2		
		····		
		A3:3		
		A4:4		

	ective Questi	on		
67	14121067	The algebraic multiplicity of λ is	1.0	0.00
		1. the least positive integer k such that $(t - \lambda)^k$ is a factor of characteristic polynomial.		
		2. the least positive integer k such that $(t - \lambda)^k$ is a factor of minimal polynomial.		
		3. the largest positive integer k such that $(t - \lambda)^k$ is a factor of characteristic polynomial.		
		4. the largest positive integer k such that $(t - \lambda)^k$ is a factor of minimal polynomial.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Questi	on		
68	14121068		1.0	0.00
		For all a,b,c are in G , $(a * b) * c = a * (b * c)$ that property is called'?		
		4. Clasura preparty		
		Closure property Associative Property		
		3. Inverse property		
		4. Commutative property		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	ective Questi	on		
69	14121069		1.0	0.00
		17≡mod 4		
		4.2		
		1. 2 2. 1		
		3. 0		
		4. 3		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Obje	ctive Questi	on			
70	14121070			1.0	0.00
		If a group	has the property that a * b=b * a for every pair of elements a and b, such group is called		
		ii a group	has the property that a "b=b" a for every pair of elements a and b, such group is called		
		1. Abelian	Group		
			elian Group		
			itator Group		
		Solvabl			
		4. Sulvabi	e Gloup		
		A1:1			
		A2:2			
		A3:3			
		A4:4			
Obje	ctive Questi	on			
71	14121071			1.0	0.00
		Match Lis	st-I with List-II		
		List-I	List-II		
		(A).R	(I). 2Z		
)X &			
		(B).{1,7,8}	(II). (0,1)		
		(0) 5	WO B		
		(C).Q	(III). Power set of		
		(D). {1}	$(V\rangle, \{a, c, h\}$		
		(D). (1)	(14). (4) (1)		
		Choose th	ne correct answer from the options given below:		
		0110030 ti	to correct answer from the options given bolon.		
		1. (A) - (IV	/), (B) - (III), (C) - (II), (D) - (I)		
			, (B) - (IV), (C) - (II), (D) - (III)		
), (B) - (III), (C) - (I), (D) - (IV)		
), (B) - (IV), (C) - (I), (D) - (III)		
		A1:1			
		A2:2			
		A2.2			
		A3:3			
		A4:4			
	ctive Questi	on			
72	14121072			1.0	0.00

		1. Finite Group 2. Infinite Group 3. Not a group 4. None A1:1 A2:2 A3:3 A4:4	$H=\{1,-1,i,-i\}$ of the complex numbers. Then (H,\times) is			
	ective Questi	on		——————————————————————————————————————		0.0-
73	14121073	Match their pola	ar coordinate with their rectangular coordinate	1	0.1	0.00
		waten their pola	a coordinate with their rectangular coordinate			
		List-l	List-II			
		(4) (2 =/2)	(1) (4 - 2)			
		(A).(2, π/3)	(I). (1,√3)			
		-				
		(B).(5, π/4)	$(II).(\frac{5}{\sqrt{2}},\frac{5}{\sqrt{2}})$			
			V2 V2			
		2,000				
		(C). $(2, \frac{5\pi}{4})$	(III). (-√2,-√2)			
		4				
		Choose the corr	rect answer from the options given below:			
		1. (A) - (I), (B) - (
		2. (A) - (II), (B) - 3. (A) - (III), (B) -				
		4. (A) - (III), (B) -				
		4. (/ t) - (iii), (b) -	- (1), (3) - (11)			
		A1:1				
		A2:2				
		A3:3				
		A4:4				
Obj	ective Questi	on				
74	14121074			1	0.	0.00

Match the linear transformation matrices to their interpretations

List-l		List-II
(A) . $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 0	(I). stretch in the y-axis
B).[0 0	0 1	(II).uniform stretch in x and y axis
C). $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	03	(III). projection in x-axis
(D). $\begin{bmatrix} 4 \\ 0 \end{bmatrix}$	0 4	(IV).projection in y-axis

Choose the correct answer from the options given below:

- 1. (A) (I), (B) (II), (C) (III), (D) (IV)
- 2. (A) (II), (B) (III), (C) (IV), (D) (I)
- 3. (A) (III), (B) (IV), (C) (I), (D) (II)
- 4. (A) (III), (B) (IV), (C) (II), (D) (I)
- A1:1
- A2:2
- A3:3
- A4:4

14121075	Match with their defin	itions	1.0
	List-l	List-II	
	(A).Eigenvalue	(I). A square matrix is diagonalizable if it has a full set of linearly independent eigenvectors.	
	(B).Eigenvector	(II).A matrix equation that equates a square matrix times a vector to a scalar multiple of that vector.	
	(C).Characteristic Polynomial	(III). A polynomial which is characteristic of a matrix and is used to find its eigenvalues.	
	(D).Diagonalization	(IV).A scalar associated with a linear system of equations that can be geometrically interpreted as scaling.	
	Choose the correct a	inswer from the options given below:	
		I), (C) - (III), (D) - (I) V), (C) - (I), (D) - (II)	
		I), (C) - (I), (D) - (III)	
	4. (A) - (I), (B) - (II)	, (C) - (III), (D) - (IV)	
	A1:1		

		A3:3 A4:4		
Ob	jective Questi	on		
76	14121076	58 ≡mod 7	1.0	0.00
		1. 3 2. 0 3. 1 4. 2		
		A1:1		
		A2:2 A3:3		
		A4:4		
Oh	jective Questi	on.		
77	14121077	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	1.0	0.00
		Assertion (A): A matrix is diagonalizable if it has as many distinct eigenvalues as its dimension. Reason (R): If a matrix has distinct eigenvalues, then the corresponding eigenvectors are linearly independent.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below .		
		 (A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the correct explanation of (A). Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). (A) is correct but (R) is not correct. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Questi	on		
78	14121078		1.0	0.00

		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): Every real symmetric matrix is diagonalizable.		
		Reason (R): The spectral theorem states that every real symmetric matrix can be orthogonally diagonalized.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below .		
		 (A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the correct explanation of (A). Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). (A) is correct but (R) is not correct. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ective Question	on .		<u> </u>
79	14121079	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	1.0	0.00
		Assertion (A) : If λ is an eigenvalue of a matrix A , then λ^2 is an eigenvalue of A^2		
		Reason (R) : The eigenvalues of A^2 are the squares of the eigenvalues of A .		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below .		
		 (A) is not correct but (R) is correct. Both (A) and (R) are correct and (R) is the correct explanation of (A). Both (A) and (R) are correct but (R) is NOT the correct explanation of (A). (A) is correct but (R) is not correct. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
01.				
,	14121080	on	1.0	0.00
- •		Which of the following statements is true about diagonalizable matrices?		
		All matrices are diagonalizable.		
		A matrix is diagonalizable if it has n distinct eigenvalues. A matrix is diagonalizable if and only if it is invertible.		
		3. A matrix is diagonalizable if and only if it is invertible.4. A matrix is diagonalizable if and only if it is a zero matrix.		
		T. A That is to diagonalizable if and only if it is a 2610 matrix.		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
Obj 81	ective Questi 14121081	on .	1.0	0.00
01	14121081	For what values of α and β the following simultaneous equations have infinite solutions?	1.0	0.00
		x+y+z=5		
		x+3y+3z=9		
		$X+2y+\alpha z=\beta$		
		1. 2,7		
		2. 3,8		
		3. 8,3		
		4. 7,2		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohi	ective Questi	on		
82	14121082		1.0	0.00
		Let A be a 3 ×3 matrix and consider the system of equations AX = $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ then		
		If the system is consistent, then it has a unique solution		
		 2. If A is singular, then the system has infinitely many solutions 3. If the system is consistent, then A ≠ 0 		
		4. If the system as unique solution, then A is non singular		
		4. If the System has unique solution, then All Shipping		
11				
		A1:1		
		A1:1 A2:2		
		A2:2		
		A2:2 A3:3		
		A2:2		
		A2:2 A3:3 A4:4		
	ective Questi	A2:2 A3:3 A4:4	10	0.00
Obj 83	ective Questi	A2:2 A3:3 A4:4	1.0	0.00
		A2:2 A3:3 A4:4	1.0	0.00
		A2:2 A3:3 A4:4	1.0	0.00
		A2:2 A3:3 A4:4	1.0	0.00

Ohio	ctive Questi	Let A be n×n matrix satisfying A² -7A +12 I=0, then which of the following is true? 1. A is invertible 2. t^2 -7t +12=0 where t=Tr(A) 3. d^2 -7d+12=0 where d=det(A) 4. λ^2 -7 λ +12=0 where λ is eigen value of A A1 : 1 A2 : 2 A3 : 3 A4 : 4		
	14121084	Let T: R ³ → R ³ be the linear transformation whose matrix wrt to standard basis {e ₁ ,e ₂ ,e ₃ } of R ³ . Then T	1.0	0.00
		1. maps the subspace spanned by e ₁ and e ₂ into itself.		
		2. Has distinct eigenvalues		
		 3. Has eigen vectors that span R³ 4. Has a non zero null space 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obje	ctive Questi	on		
	14121085		1.0	0.00
		Let V be a vector space of dimension 3 over R $\mathbb R$ Let $T:V\to V$ be a linear transformation given by the matrix A= $\begin{bmatrix} 1 & -1 & 0 \\ 1 & -4 & 3 \\ -2 & 5 & -3 \end{bmatrix}$ with ordered basis $\{V1,V2,V3\}$ of V . Then which of the following is true? $1 \cdot T(V_2) = 0$ $2 \cdot T(V_1 + V_2) = 0$ $3 \cdot T(V_1 + V_2 + V_3) = 0$ $4 \cdot T(V_1 + V_3) = T(V_2)$		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ctive Questi	on.		

	86	14121086		1.0	0.00
			Let A be an nxn matrix such that the set of all its nonzero eigenvalues has exactly r elements. Which of the following statements is true?		
			4 contracts		
			1. $\operatorname{rank} A \leq r$. 2. if $r=0$, then $\operatorname{rank} A < n-1$		
			3. A^2 has r distinct nonzero eigenvalues		
			4. rank $A \ge r$		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
15		ctive Questi	on .	11	11
	87	14121087	The size of the section [7 1]	1.0	0.00
			The eigen values of the matrix $\begin{bmatrix} 7 & 1 \\ 0 & 3 \end{bmatrix}$ are		
			1. 7,3		
			2. 1,0		
			3. 1,3		
			4. 10,0		
			A1:1		
			A2:2		
			A3:3		
			A4.4		
			A4:4		
	Ob:	ctive Questi			
115		14121088	on	1.0	0.00
			The two equations that have no values to satisfy both equations then this is called		
			1. Consistent system		
			2. Inconsistent system		
			3. Solution system		
			4. Constant system		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
1	Obje	ctive Questi	on		

89	14121089		1.0	0.00
		What is the solution to the system of equations?		
		y=3x-8		
		y=4-x		
		1. (1,3) 2. (3,1)		
		3. (-3,1)		
		4. (3,-1)		
		SEC ADDICE		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
90	jective Questi	on	1.0	0.00
		A system of linear equation is said to be consistent, if it has		
		1. No solution		
		2. One solution		
		3. Infinite solutions		
		4. One or more solutions		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
Oh	jective Questi	on		
91			1.0	0.00
		The solution of the simple homogeneous system $x + 5y - z = 0$ is		
		1. (9,2,2)		
		2. (1,1,1)		
		3. (5,-1,0)		
		4. (5,0,1)		
		A1:1		
		A2:2		
		A2 . 2		
		A3:3		
		A4:4		

	ective Questi	on		
92	14121092	Which of the following set of vectors in R ⁿ is linearly independent	1.0	0.00
		1. {(1,2),(1,3)}		
		2. {(2,4),(4,8)}		
		3. {(1,0),(0,1),(5,2)} 4. {(1,0),(5,0)}		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi	on	1.0	0.00
93	14121093	Write matrix corresponding to the following linear transformations	1.0	0.00
		$y_1 = 2x_1 - x_2 - x_3$		
		$y_2 = 3x_1$		
		$y_3 = x_1 + x_2$		
		$1. \begin{bmatrix} 2 & -1 & -1 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{bmatrix}$		
		$ \begin{bmatrix} 2 & -1 & -1 \\ 3 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} $		
		$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 & -1 & -1 \end{bmatrix}$		
		$ \begin{bmatrix} 2 & -1 & -1 \\ 0 & 0 & 3 \\ 1 & 1 & 1 \end{bmatrix} $		
		$ \begin{bmatrix} 2 & -1 & -1 \\ 0 & 1 & 3 \\ 1 & 1 & 0 \end{bmatrix} $		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohio	ective Questi	on		
	14121094		1.0	0.00
		If A is an m ×n matrix, then the codomain of the transformation corresponding to A is:		
		1. R ⁿ 2. R ^{m+n}		
		3. R ^{mn}		
		4. R ^m		

		A1:1 A2:2 A3:3		
		A4:4		
	ective Questi	on		10.00
95	14121095		1.0	0.00
		If A is an $n \times n$ invertible square matrix then which of the following is true?		
		1. Then A has exactly n - 1 pivot positions		
		2. The columns of A form a linearly independent set.		
		3. A is not equivalent to the $n \times n$ identity matrix.		
		4. A ^T is not an invertible matrix.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Questi	on	1.0	0.00
96	14121096		1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ [1 & 0 & 0] $	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ 1. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ 2. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ 3. $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ [4 & 0 & 0] $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ [4 & 0 & 0] $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	1.0	0.00
		Find the inverse of the matrix $ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 1. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} $ $ 2. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix} $ $ 3. \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix} $ $ 4. \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} $	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Al: 1	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Al: 1	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ Al: 1	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ A1: 1 A2: 2 A3: 3	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1	1.0	0.00
		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 0 & 0 \\ 4 & 0 & 1 \end{bmatrix}$ A1: 1 A2: 2 A3: 3	1.0	0.00
96		Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1 A2:2 A3:3 A4:4	1.0	0.00
96	14121096	Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 1. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 1 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ A1:1 A2:2 A3:3 A4:4		0.00

		If A is an invertible square matrix then; 1. $(A^{T})^{-1} = (A^{-1})^{T}$ 2. $(A^{T})^{T} = (A^{-1})^{T}$ 3. $(A^{T})^{-1} = (A^{-1})^{-1}$ 4. $(A^{T})^{-1} = A$		
		A2:2 A3:3 A4:4		
Ob	ective Questi	on		
98	14121098	What is the largest possible rank of a 7×2 matrix?	1.0	0.00
		1. 1 2. 2		
		3. 4		
		4.7		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obj	14121099	on	1.0	0.00
Obj 99	ective Questi		1.0	0.00

Match List	-I with	liet_l

List-II
(I).5432
(11).40
(111). 1
(IV).899

Choose the correct answer from the options given below:

- 1. (A) (III), (B) (I), (C) (IV), (D) (II)
- 2. (A) (I), (B) (II), (C) (III), (D) (IV)
- 3. (A) (IV), (B) (I), (C) (II), (D) (III)
- 4. (A) (III), (B) (II), (C) (IV), (D) (I)
- A1:1
- A2:2
- A3:3
- A4:4

100	14121100	Which of the following matrices has the same row reduced echelon form as of the matrix	1.0	0.00)
		$\begin{bmatrix} 4 & 8 & 4 \\ 3 & 6 & 1 \\ 2 & 4 & 0 \end{bmatrix}$			
		1. $\begin{bmatrix} 1 & 2 & 0 \\ 10 & 0 & 1 \end{bmatrix}$ 2. $\begin{bmatrix} 1 & 1 & 0 \\ 10 & 0 & 1 \end{bmatrix}$ 3. $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 4. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$			
		A1:1			
		A2:2			
		A3:3			
		A4:4			