PREVIEW QUESTION BANK

 $\label{eq:Module Name: cec24-cy05} Module Name: cec24-cy05 Coordination Chem states of matters and chemical kinetics-ENG Exam Date: 18-May-2024 & Batch: 15:00-18:00 \\$

Sr. Io.	Client Q II)	Question Body and Alternativ	es Marks	M	gati Iark
	tive Quest	ion				
14	1362001	The transition elemen	t with highest density is:		2.0	0.
		1. Os				
		2. Fe				
		3. Zn				
		4. Ru				
		A1:1				
		A2:2				
		A3:3				
		A4:4				
ect	tive Quest	ion				
	1362002	1011			2.0	0
	.502002	Match List-I with List	-11			
		List-I	List-II			
		(Transition metal ion.)	(Spin only magnetic moment value in B.M.)			
		(A). Cu(II)	(I). 2.83			
		(B). Ni(II)	(II). 4.90			
		(C). Zn(II)	(III). 0.0			
		(D). Mn(III)	(IV). 1.73			
		Choose the correct a	nswer from the options given below:			
		1. (A) - (I), (B) - (II), (C 2. (A) - (IV), (B) - (I), (C 3. (A) - (I), (B) - (II), (C 4. (A) - (III), (B) - (IV),	C) - (III), (D) - (II) c) - (IV), (D) - (III)			
		A1:1				
		A2:2				
		A3:3				

		A4:4		
Ob	ective Quest	on .		
Obj 3	jective Quest 14362003	Given below are two statements: Statement (I): The melting and boiling points of the transition elements are generally very high. Statement (II): Zn, Cd and Hg are exception, with very low melting and boiling point. In light of the above statements, choose the <i>most appropriate</i> answer from the options given below. 1. Both Statement (I) and Statement (II) are true. 2. Both Statement (I) and Statement (II) are false. 3. Statement (I) is true but Statement (II) is false. 4. Statement (I) is false but Statement (III) is true.	2.0	0.00
		A2:2 A3:3 A4:4		
Obj	jective Quest	on		
4	14362004	The transition element with highest melting point is: 1. Ta 2. W 3. Re 4. Ag Al: 1 A2: 2 A3: 3 A4: 4	2.0	0.00
	14362005	on	2.0	0.00
			2.0	

		Given below are two statements:		
		Statement (I): TiCl ₃ used as the Ziegler-Natta catalyst in the production of polythene.		
		Statement (II): V ₂ O ₅ converts SO ₂ to SO ₃ in the contact process for making H ₂ SO ₄ .		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		 Both Statement (I) and Statement (II) are true. Both Statement (I) and Statement (II) are false. Statement (I) is true but Statement (II) is false. Statement (I) is false but Statement (II) is true. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
O	jective Quest	on		
6	14362006	Given below are two statements:	2.0	0.00
		Statement (I): Fe is the fourth most abundant element by weight.		
		Statement (II): Ti the ninth and Mn the twelth most abundant element.		
		In light of the above statements, choose the <i>most appropriate</i> answer from the options given below.		
		1. Both Statement (I) and Statement (II) are true. 2. Both Statement (I) and Statement (II) are false. 3. Statement (I) is true but Statement (II) is false.		
		4. Statement (I) is false but Statement (II) is true.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Quest	on		
7	14362007		2.0	0.00

		Given below are two statements:		
		Statement (I): Fe is the fourth most abundant element by weight.		
		Statement (II): According to Harkins' rule the element with an even atomic number are in general more abundant than their neighbours with odd atomic numbers.		
		In light of the above statements, choose the most appropriate answer from the options given below.		
		 Both Statement (I) and Statement (II) are true. Both Statement (I) and Statement (II) are false. Statement (I) is true but Statement (II) is false. Statement (I) is false but Statement (II) is true. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
O	bjective Quest	on .		
8	14362008	Which of the following are true for the transition metals and their compounds?	2.0	0.00
		(A). known for their catalytic activity		
		(B). possess multiple oxidation states		
		(C). are mostly coloured		
		(D). form large number of complexes		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (C) only. 2. (A), (B) and (D) only. 3. (A), (B), (C) and (D). 4. (B), (C) and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	bjective Quest	ion		
9	14362009		2.0	0.00
		Which among the following is NOT a lanthanonids?		
		1. Nd		
		2. Sm		
		3. Dy 4. Am		

		A1:1		
		A2:2		
		A3:3		
		A4:4		
L				
	Objective Que		11-	
1	0 14362010		2.0	0.00
		The correct order of ligand in the order of increasing field strength is:		
		(A). H ₂ O		
		(B). CO		
		(C). SCN⁻		
		(D). I		
		Choose the correct answer from the options given below:		
		1. (A) < (B) < (C) < (D).		
		2. (D) < (C) < (A) < (B).		
		3. (B) < (A) < (D) < (C).		
		4. (C) < (B) < (D) < (A).		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	Objective Que	tion		
	1 14362011		2.0	0.00
		Which among the following is NOT a structural isomerism?		
		Solvate isomerism		
		2. Optical isomerism		
		3. Linkage isomerism		
		4. Ionisation isomerism		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
L				
	Objective Que		2.0	0.00
1	2 14362012		2.0	0.00

		The IUPAC name of the red coloured complex $[Fe(C_4H_7O_2N_2)_2]$ obtained from the reaction of Fe^{2+} and dimethyl glyoxime is:		
		1. bis (dimethyl oxime) ferrate (II)		
		2. bis (dimethyl oxide) iron (II)		
		3. bis (2,3 butanediol dioximato) iron (II)		
		4. bis (dimethyl glyoximato) iron(II)		
		A1:1		
		A2:2		
		A2 . 2		
		A3:3		
		A4:4		
Oł	jective Quest	on		
	14362013		2.0	0.00
		K ₂ [OsCl ₅ N] is named as:		
		Potassium pentachloro azo osmate (VI)		
		Potassium pentachloro nitridoosmate (VI)		
		Potassium pentachloro azidoosmate (VI)		
		Potassium pentachloro nitronium osmate (II)		
		1. Totalosiam pomacino o materialia comate (ii)		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		лт.т		
L				
	14362014	on	2.0	0.00
14	14302014	The EAN of metal atoms in Fe(NO) ₂ (CO) ₂ and Co ₂ (CO) ₈ respectively are:	2.0	0.00
		1. 34, 35		
		2. 34, 36		
		3. 36; 36		
		4. 36, 35		
		A1:1		
		A2:2		
		12.2		
		A3:3		
		A4:4		
	jective Quest	on		
15	14362015		2.0	0.00

		Pick out the correct statement with respect to [Fe(CN) ₆] ⁴⁻ 1. It is sp ² d ² hybridised, tetrahedral 2. It is d ² sp ³ hybridised, octahedral		
		 3. It is dsp² hybridised, square planar 4. It is sp³d² hybridised octahedral 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Oh	jective Quest	on.		
	14362016		2.0	0.00
	11302010	The CFSE for octahedral [CoCl ₆] ⁴⁻ is 18,000 cm ⁻¹ . The CFSE for tetrahedral [CoCl ₄] ²⁻ will be:	2.0	0.00
		1. 18,000 cm ⁻¹		
		2. 16,000 cm ⁻¹		
		3. 8,000 cm ⁻¹		
		4. 20,000 cm ⁻¹		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Quest 14362017	on	2.0	0.00
1 /	14302017	Primary and secondary valency of Pt in [Pt(en) ₂ Cl ₂] are:	2.0	0.00
		1. 4; 4		
		2. 4, 6		
		3. 6, 4		
		4. 2, 6		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
L-				
	14362018	on	2.0	0.00
18	14302018		2.0	0.00

		The number of donot sites in ethylene diamine, dimethyl glyoxime, triethylene tetraamine and EDTA are respectively:		
		4. 2: 2: 2 and 6		
		1. 2; 2; 3 and 6 2. 2; 2; 4 and 6		
		3. 2; 2; 2 and 6		
		4. 2; 3; 2 and 6		
		4. Z, 3, Z and 0		
		A1:1		
		A2:2		
		A3:3		
		A4.4		
		A4:4		
	ective Questi			
19	14362019	Which of these statements about [Co(CN) ₆] ³⁻ is true?	2.0	0.00
		Which of these statements about [Co(Civ)6] ² is true?		
		1. It has 4 unpaired electron, high spin		
		2. No unpaired electron, high spin		
		3. No unpaired electron, low spin		
		4. 4 unpaired electron, low spin		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		111.1		
	ective Questi 14362020		2.0	0.00
20	14302020	Which one of the following statements concerning lanthanides elements is false?	2.0	0.00
		Lanthanides are seperated from one another by ion-exchange method		
		Ionic radii or trivalent lanthanides steadily increases		
		All lanthanides are highly dense metals		
		4. Mostly characteristic oxidation state of lanthanide elements is +3		
		A1:1		
		A2:2		
		n2.2		
		A3:3		
		A4:4		
Obj	ective Questi	on		
	14362021		2.0	0.00

		Out of $[Fe(CN)_6]^{4-}$, $[Ni(CN)_4]^{2-}$ and $[Ni(CO)_4]$		
		Out of [Fe(CN) ₆] ⁻ , [M(CN) ₄] ⁻ and [M(CO) ₄]		
		1. all have identical geometry		
		2. all are paramagnetic		
		3. all are diamagnetic		
		4. [Fe(CN) ₆] ⁴ -is diamagnetic but [Ni(CN) ₄] ²⁻ and [Ni(CO) ₄] are paramagnetic		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Obi	ective Quest	on		
	14362022		2.0	0.00
		Select the element, which does not show +4 oxidation state:		
		A Ti		
		1. Ti 2. Zr		
		3. La		
		4. Pt		
		T. CA		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	<u> </u>			
	ective Quest 14362023	on	2.0	0.00
	1.002020	Atomic size of gold is almost same as that of silver. It is due to		0.00
		the same crystal stucture of silver and gold		
		almost the same electropositive character of the two metals transition metals contraction in a series		
		transition metals contraction in a series the effect of lanthanide contraction		
		4. the effect of lantifiantice contraction		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
_				
	ective Quest	on	2.0	0.00
24	14302024		2.0	0.00
II			11	

		The actinoids exhibit more number of oxidation states in general than the lanthanoids. This is because		
		1. due to less energy difference between 6d and 5f		
		the 5f orbitals are more buried than the 4f orbitals		
		3. there is a similarity between 4f and 5f orbitals in their angular part of the wave function		
		4. the actinoids are more reactive than the lanthanoids		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ob	jective Questi	on		
	14362025		2.0	0.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): Zn, Cd, Hg are non-transition elements while Cu, Ag, Au are transition element.		
		Reason (R): In Zn, Cd, Hg (n-1)d orbitals are completely filled in their atomic state whereas in Cu, Ag, Au they are		
		incomplete.		
		In light of the above statements, choose the correct answer from the options given below.		
		1. Both (A) and (R) are true and (R) is the correct explanation of (A).		
		2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A).		
		3. (A) is true but (R) is false.		
		4. (A) is false but (R) is true.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
_	jective Quest	on		
26	14362026		2.0	0.00
II.	n I		H	II

	(A). 15 atm and 200 K (B). 1 atm and 273 K (C). 0.5 atm and 500 K (D). 380 mmHg and 227 °C Choose the <i>correct</i> answer from the options given below: 1. (C) and (D) only. 2. (A), (B) and (D) only. 3. (A), (B), (C) and (D). 4. (B), (C) and (D) only.		
	A1:1 A2:2 A3:3 A4:4		
ective Ouest	ion		
		2.0	0.00
	The number of atoms per unit cell in face centred and body centred cubic cell are respectively: 1. 4, 2 2. 4, 3 3. 4, 6 4. 2, 4 A1: 1 A2: 2 A3: 3 A4: 4		
	ion	2.0	0.00
17302020	Gaseous and liquid forms of a substance are indistinguishable:	2.0	0.00
	above the triple point temperature and triple point pressure above critical temperature and critical pressure above the boiling point below the isobestic point		
	14362027	(C). 0.5 atm and 500 K (D). 380 mmHg and 227 °C Choose the correct answer from the options given below: 1. (C) and (D) only. 2. (A), (B) and (D) only. 3. (A), (B), (C) and (D) 4. (B), (C) and (D) only. A1: 1 A2: 2 A3: 3 A4: 4 **Sective Question** The number of atoms per unit cell in face centred and body centred cubic cell are respectively: 1. 4, 2 2. 4, 3 3. 4, 6 4. 2, 4 A1: 1 A2: 2 A3: 3 A4: 4 **Sective Question** The sective Question** A1: 1 A2: 2 A3: 3 A4: 4 A1: 1 A2: 2 A3: 3 A4: 4 **Sective Question** I above the triple point temperature and triple point pressure 2. above critical temperature and triple point pressure 3. above the boling point	(C). 0.5 atm and 500 K (D). 380 mmHg and 227 °C Choose the correct answer from the options given below: 1. (C) and (D) only. 2. (A). (B) and (D) only. 3. (A). (B). (C) and (D). 4. (B). (C) and (D) only. A1: 1 A2: 2 A3: 3 A4: 4 20 The number of atoms per unit cell in face centred and body centred cubic cell are respectively: 1. 4. 2 2. 4, 3 3. 4, 6 4. 2, 4 A1: 1 A2: 2 A3: 3 A4: 4 Sective Question 14362027 The sective Question 20 20 A1: 1 A2: 2 A3: 3 A4: 4 A4: 4 A3: 3 A4: 4 A4: 4 A4: 4 A5:

		A3:3		
		A4:4		
Oh	jective Questi	on	<u> </u>	
	14362029		2.0	0.00
		If the pressure of a given mass of gas is reduced to half and temperature is doubled simultaneously, the volume will be		
		same as before twice as before		
		3. four times as before		
		4. one fourth as before		
		4. One fourth as before		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Quest	on		
30	14362030	Since the atomic weights of C, N and O are 12, 14 and 16u, respectively. Among the following pair, the pair that will diffuse at	2.0	0.00
		the same rate is:		
		the sume rate is.		
		carbon dioxide and nitrous oxide		
		carbon dioxide and nitrogen peroxide		
		3. carbon dioxide and carbon monoxide		
		nitrous oxide and nitrogen peroxide		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		74.4		
	jective Quest	on		
31	14362031	The Miller index of crystal plane cutting through the crystal axes at (2a, 3b, c) is:	2.0	0.00
		1. (2, 3, 1)		
		2. (1, 2, 2)		
		3. (4, 6, 2)		
		4. (3, 2, 6)		
		A1:1		
		A2:2		
		Ω2.2		

		A3:3		
		A4:4		
		ΑΤ.Τ		
Ob	jective Questi	on		
32	14362032	At constant temperature, the pressure of the gas is reduced to one third, the volume	2.0	0.00
		1. reduces to one third		
		2. increases by three times		
		3. remains the same		
		4. cannot be predicted		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	14362033	on	2.0	0.00
	14302033	The rate constant of a reaction depends upon	2.0	0.00
		1. temperature of the reaction		
		2. extent of the reaction		
		3. initial concentration of the reactants		
		4. the time of completion of reaction		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	jective Quest	on		
34	14362034		2.0	0.00
		The rate of a gaseous reaction is given by the expression k[A] ² [B] ³ . The volume of the reaction vessel is reduced to one half		
		of the initial volume. What will be the reaction rate as compared to the original rate 'a'?		
		1. 1/8a		
		2. 1/2a		
		3. 2a		
		4. 32a		
		A1:1		
		A2:2		
		A2 - 2		

		A4:4		
Ob	jective Quest	on		
	14362035	The overall rate of a reaction is governed by 1. the rate of fastest intermediate step 2. the sum of the rates of all intermediate steps 3. the average of the rates of all the intermediate steps 4. the rate of slowest intermediate step A1:1 A2:2 A3:3 A4:4	2.0	0.00
Ot	jective Quest	on		
36	14362036	A first order reaction takes 40 min for 30% decomposition. What will be t _{1/2} ? 1. 77.7 min 2. 52.5 min 3. 46.2 min 4. 22.7 min A1:1 A2:2 A3:3 A4:4	2.0	0.00
	jective Quest	on		
377	14362037	The activation energy in a chemical reaction is defied as 1. the difference in energies of reactants and products 2. the sum of energies of reactants and products 3. the difference in energy of intermediate complex with the average energy of reactants. 4. the difference in energy of intermediate complex and the average energy of reactants	2.0	0.00
		A2:2 A3:3		
		A4:4		

	ective Questi			
38	14362038	The increase in concentration of the reactants lead to change in	2.0	0.00
		1. ΔH		
		2. collision frequency		
		3. activation energy		
		4. equilibrium constant		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
	ective Questi		0.0	0.00
39	14362039	For a first order reaction, the ratio of the time taken for 7/8 th of the reaction to complete to that of half of the reaction to	2.0	0.00
		complete is		
		1.3:1		
		2.1:3		
		3.2:3		
		4. 3 : 2		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
		A4:4		
	ective Questi 14362040		2.0	0.00
40	14302040	Activation energy of a chemical reaction can be determined by	2.0	0.00
		determining the rate constant at standard temperature		
		2. determining the rate constatnt at two temperatures		
		3. determining probability of collision		
		using catalyst		
		A1:1		
		A2:2		
		A3:3		
		A4:4		

Obj	ective Quest	on		
41	14362041	Which of the following statements is not correct for the catalyst? 1. It catalyses the forward and backward reaction to the same extent 2. It alters ΔG of the reaction	2.0	0.00
		3. It is a substance that does not change the equilibrium constant of a reaction4. It provides an alternate mechanism by reducing activation energy between reactants and products.		
		A1:1 A2:2		
		A3:3 A4:4		
	ective Quest	on		
42	14362042	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): Order of a reaction with respect to any reactant can be zero, positive, negative or fractional Reason (R): Rate of a reaction cannot decrease with increase in concentration of a reactant or a product In light of the above statements, choose the correct answer from the options given below. 1. Both (A) and (R) are true and (R) is the correct explanation of (A). 2. Both (A) and (R) are true but (R) is NOT the correct explanation of (A). 3. (A) is true but (R) is false. 4. (A) is false but (R) is true. A1:1 A2:2 A3:3 A4:4	2.0	0.00
	ective Quest	on	2.0	0.00
43	14362043	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R). Assertion (A): The rate of a reaction sometimes does not depend on concentrations	2.0	0.00
		Reason (R): Lower the activation energy, faster is the reaction		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		 Both (A) and (R) are true and (R) is the correct explanation of (A). Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. (A) is false but (R) is true. 		
		A1:1		

		A2:2		
		A3:3		
		A4:4		
Obje	ective Questi	on		
	14362044	Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).	2.0	0.00
		Assertion (A): Ea of the forward reaction is higher than that of backward reaction in a reversible endothermic reaction		
		Reason (R): Incrasining the temperature of the substance increases the fraction of molecules which collide with energies greater than Ea.		
		In light of the above statements, choose the correct answer from the options given below.		
		 Both (A) and (R) are true and (R) is the correct explanation of (A). Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. (A) is false but (R) is true. 		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
Ohie	ective Questi	on		
	14362045	•	2.0	0.00
		Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
		Assertion (A): All the gases should be cooled below their critical temperature for liquification.		
		Reason (R): Cooling slows down the movement of molecules therefore, intermolecular forces may hold the slowly moving molecules together and the gas liquifies.		
		In light of the above statements, choose the <i>correct</i> answer from the options given below.		
		 Both (A) and (R) are true and (R) is the correct explanation of (A). Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. (A) is false but (R) is true. 		
		A1:1		
		A1:1 A2:2		
		A2:2		

4	16	14362046		2.0	0.00
			Given below are two statements, one is labelled as Assertion (A) and other one labelled as Reason (R).		
			Assertion (A): Viscosity of liquids decreases as the temperature rises		
			Reason (R): At high temperature, molecules have high kinetic energy and can overcome the intermolecular forces to flow faster.		
			In light of the above statements, choose the correct answer from the options given below.		
			 Both (A) and (R) are true and (R) is the correct explanation of (A). Both (A) and (R) are true but (R) is NOT the correct explanation of (A). (A) is true but (R) is false. (A) is false but (R) is true. 		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
-	Эbj	ective Questi	on		
4	17	14362047	The rate law for a reaction, $A + B \rightarrow C + D$ is given by the expression k[A]. The rate of reaction will be	2.0	0.00
			1. doubled on doubling the concentration of B		
			2. halved on reducing the concentration of A to half		
			3. decreased on increasing the temperature of the reaction		
			unaffected by any change in concentration or temperature.		
			A1:1		
			A2:2		
			A3:3		
			A4:4		
	Դե:	ective Questi	on		
- 15	_	14362048		2.0	0.00
			For the reaction $H_{2(g)} + Br_{2(g)} \rightarrow 2HBr_{(g)}$, the reaction rate = $k[H_2][Br_2]^{1/2}$. Which statement is true about this reaction?		
			1. The reaction is of second order		
			2. Molecularity of the reaction is 3/2		
			3. The unit of k is sec ⁻¹		
			Molecularity of the reaction is 2.		
			A1:1		
			A2:2		
			A3:3		

		A4:4		
Ob	ective Quest	ion		
	14362049	Which of the following are correct statements?	2.0	0.00
		(A). Van der waals constant 'a' is a measure of attractive force		
		(B). Van der waals constant 'b' is also called co-volume or excluded volume		
		(C). 'b' is expressed in L mol ⁻¹		
		(D). 'b' is one third of critical volume		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), (B) and (D) only. 2. (A), (B) and (C) only.		
		3. (A), (B), (C) and (D).		
		4. (B), (C) and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		
	ective Quest 14362050	ion	2.0	0.00
	11002000	When a gas is expanded at constant temperature		0.00
		(A). The pressure decreases		
		(B). The kinetic energy of the molecules remains the same		
		(C). The kinetic energy of the molecules decreases		
		(D). The number of molecules of the gas decreases		
		Choose the <i>correct</i> answer from the options given below:		
		1. (A), and (B) only.		
		2. (A), (B) and (D) only. 3. (A), (B), (C) and (D).		
		4. (B), (C) and (D) only.		
		A1:1		
		A2:2		
		A3:3		
		A4:4		