PREVIEW QUESTION BANK Module Name : cec24-cy02 Chemistry Of Nanomaterials-ENG Exam Date : 18-May-2024 Batch : 15:00-18:00 | Sr.
No. | Client Ques
ID | Question Body and Alternatives M | farks N | legative
Marks | |------------|-------------------|--|---------|-------------------| | Objec | tive Ouestion | | | | | | tive Question | Nanomaterials are the materials with at least one dimension measuring less than 1. 1 nm 2. 10 nm 3. 1000 nm 4. 100 nm | 1.0 | 0.00 | | | | A2:2 A3:3 A4:4 | | | | | tive Question | | | 1 | | | | The increase in intensity of absorption maximum due to substituent or solvent effect is termed as 1. Hyperchromic shift 2. Bathochromic shift 3. Hyporchromic shift 4. Hypsochromic shift A1:1 A2:2 A3:3 A4:4 | 1.0 | 0.00 | | | 14292003 | The 'physical colour' of butterfly wings is due to 1. Pigments 2. Periodical nanostructure 3. Dyes 4. Biological macro arrays A1:1 A2:2 | 1.0 | 0.00 | | | | A3:3 | | | |-----------|----------------|--|-----|------| | | | A4:4 | | | | Ohie | ctive Question | | | | | 4 | 14292004 | | 1.0 | 0.00 | | | | The adhesives can be considered as biomimetic inspiration from | | | | | | 4. Cooleals foot | | | | | | 1. Gecko's feet | | | | | | Spider silk Shark skin | | | | | | 4. Lotus leaf | | | | | | 4. Lotus leai | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | ctive Question | | | | | 5 | 14292005 | | 1.0 | 0.00 | | | | Graphene sheet can be represented as | | | | | | 1. The 0-D nanomaterials | | | | | | The 2-D nanomaterials | | | | | | 3. The 1-D nanomaterials | | | | | | 4. The 3-D nanomaterials | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | 7.1. T | | | | C1: | <i>i</i> : | | | | | Оbје
6 | ctive Question | | 1.0 | 0.00 | | 0 | 14292006 | Which of the following represents a 3-D nanomaterial? | 1.0 | 0.00 | | | | | | | | | | All dimensions are outside nano regime | | | | | | Only one dimension is outside nano regime | | | | | | All dimensions are inside nano regime | | | | | | Only one dimension is inside nano regime | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | A4:4 | | | |------|----------------|--|-----|------| | Obje | ctive Question | | | | | 7 | 14292007 | | 1.0 | 0.00 | | | | Which of the following is an oldest technique used for the synthesis of metal nanoparticles? | | | | | | | | | | | | 1. Sputtering | | | | | | 2. RF plasma method | | | | | | 3. Thermolysis | | | | | | 4. Nanolithography | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | ctive Question | | | | | 8 | 14292008 | | 1.0 | 0.00 | | 0 | 14292000 | Which is incorrect about laser ablation method? | 1.0 | 0.00 | | | | | | | | | | It can be considered as a green technique | | | | | | 2. Low heat transfer to surrounding | | | | | | 3. Wide range of nanomaterials can be produced | | | | | | It can be performed only by using pulsed laser | A1:1 | | | | | | | | | | | | A2:2 | | | | | | AZ . Z | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | | | | | | | ctive Question | | | | | 9 | 14292009 | Which one of the following is a 'top-down method' for the synthesis of nanomaterials? | 1.0 | 0.00 | | | | which one of the following is a top-down method for the synthesis of hanomaterials? | | | | | | Chemical Vapour Deposition | | | | | | 2. Sol-gel synthesis | | | | | | 3. Laser Ablation | | | | | | 4. Co-precipitation | | | | | | 4. Co-precipitation | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | | | | | | | A4:4 | | | | Obje | ctive Question | | | | |------|----------------|---|-----|------| | 10 | 14292010 | In which following synthesis an autoclave is used? | 1.0 | 0.00 | | | | | | | | | | 1. Spray pyrolysis | | | | | | 2. Electrodeposition | | | | | | Hydrothermal synthesis Chemical vapour deposition | | | | | | 4. Chemical vapour deposition | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | ctive Question | | | | | 11 | 14292011 | Pick out the optical probe characterization method from the following | 1.0 | 0.00 | | | | Pick out the optical probe characterization method from the following | | | | | | 1. DLS | | | | | | 2. SEM | | | | | | 3. AFM | | | | | | 4. STM | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Ohie | ctive Question | | | | | | 14292012 | | 1.0 | 0.00 | | | | Mass spectroscopy belongs to which type of characterization method? | | | | | | wass spectroscopy belongs to which type of characterization method? | | | | | | In lon-particle probe method | | | | | | Electron probe method | | | | | | 3. Optical probe method | | | | | | 4. Thermodynamic method | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | | | | | | Obje | ctive Question | | | | |------|----------------|---|-----|------| | 13 | 14292013 | Which of the following is <i>not</i> an electron probe method? | 1.0 | 0.00 | | | | Scanning Electron Microscopy | | | | | | 2. Scanning Tunnelling Microscopy | | | | | | 3. Transmission Electron Microscopy | | | | | | Auger Electron Spectroscopy | | | | | | | | | | | | | | | | | | A1:1 | | | | | | AI.I | | | | | | 42.2 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | ctive Question | | | | | 14 | 14292014 | Which of the following method is hampered by small risk of radiation expenses | 1.0 | 0.00 | | | | Which of the following method is hampered by small risk of radiation exposure? | | | | | | Atomic Force Microscopy (AFM) | | | | | | 2. Dynamic Light Scattering (DLS) | | | | | | 3. Mass Spectroscopy (MS) | | | | | | Scanning Electron Microscopy (SEM) | | | | | | | | | | | | | | | | | | A1:1 | | | | | | | | | | | | A2.2 | | | | | | A2:2 | | | | | | | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | Obje | ctive Question | | | | | 15 | 14292015 | In Tanancia in Electron Mineral (TEM) the high account of the include the second | 1.0 | 0.00 | | | | In Transmission Electron Microscopy (TEM), the high energy electron beam is obtained from | | | | | | 1. Interferometer | | | | | | 2. Photo multiplier tube | | | | | | 3. Electron gun | | | | | | Cathode ray generator | | | | | | | | | | | | | | | | | | Al:1 | | | | | | | | | | | | A2:2 | | | | | | NZ.Z | | | | | | A2.2 | | | | | | A3:3 | | | | | | | | | | | | A4:4 | | | | | | | | | | | ctive Question | | | | | 16 | 14292016 | | 1.0 | 0.00 | | | | | | | | | | Which of the following steps is <i>not</i> connected to sample preparation in TEM? 1. Fixation 2. Rinsing 3. Dehydration 4. Condensation A1:1 A2:2 A3:3 A4:4 | | | |------|---------------------------|---|-----|------| | | tive Question
14292017 | | 1.0 | 0.00 | | 17 | 14292017 | Which is incorrect about Atomic Force Microscopy (AFM)? | 1.0 | 0.00 | | | | Allows the use of conductive samples only Allows the use of conductive and non-conductive samples | | | | | | 3. It belongs to scanning probe method | | | | | | 4. There are different imaging modes | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | | ctive Question | | | | | 18 | 14292018 | Which imaging mode in Atomic Force Microscopy (AFM) is suitable for biological samples? | 1.0 | 0.00 | | | | Non- contact mode Tapping mode | | | | | | 3. Contact mode | | | | | | 4. Constant current mode | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obje | ctive Question | | | | | | 14292019 | | 1.0 | 0.00 | | | | | | | | | | First scanning tunneling microscope was developed by 1. Gerd Binnig and Heinrich Rohrer 2. Ernst Ruska and Max Knoll 3. Gerd Binning and Andre Geim 4. Norio Taniguchi | | | |------|----------------|--|-----|------| | | | A1:1
A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obje | ctive Question | | | | | 20 | 14292020 | | 1.0 | 0.00 | | | | Excellent vibration control and sharp probe tips are required for better imaging with | | | | | | 1. SEM | | | | | | 2. AFM | | | | | | 3. STM | | | | | | 4. STEM | | | | | | | | | | | | A1:1 | | | | | | A2:2 | | | | | | A3:3 | | | | | | A4:4 | | | | Obje | ctive Question | | | | | 21 | 14292021 | | 1.0 | 0.00 | | 21 | 112)2021 | Which technique is used for the band-gap determination of semiconductor nanocrystals? | 1.0 | 0.00 | | | | 1. IR spectroscopy | | | | | | 2. Atomic Absorption Spectroscopy | | | | | | Surface Enhanced Raman Spectroscopy (SERS) A LINA Spikla anastroscopy | | | | | | UV-Visible spectroscopy | | | | | | | | |
							A1:1												A2:2						A3:3						A4:4										Obje	ctive Question					22	14292022		1.0	0.00										X-ray fluorescence is obtained after				------	----------------	--	-----	------										Primary X-rays removes core electrons						Primary X-rays removes outer electrons Electron holes are created at outer shell						Primary X-rays are reflected by electrons						4. Fillinary X-rays are reflected by electrons																		A1:1												A2:2												A3:3												A.A. A.						A4:4											ctive Question					23	14292023	Which is incorrect about the EDAX Spectrum	1.0	0.00				Which is incorrect about the LDAX Spectrum						It is a plot of X-ray counts against the energy						2. A high value of peak-to background ratio is essential for proper identification of elements						Characteristic X-ray represents the back ground						Continuum X-rays represent the background																		A1:1						Al. I												A2:2												A3:3												A4:4										Ohie	ctive Question					24	14292024		1.0	0.00				Elemental composition of materials can be determined by												1. Powder XRD						Thermo Gravimetric Analysis Seanning Typnelling Misroscopy						Scanning Tunnelling Microscopy Energy Dispersive X-ray Analysis						4. Ellergy dispersive X-ray Arranysis																		A1:1												A2:2												A3:3																		A4:4											ctive Questior					25	14292025		1.0	0.00																Thin-film of single crystals can be prepared using 1. Molecular beam epitaxy 2. Chemical vapour deposition 3. Laser ablation 4. Hydrothermal synthesis A1:1 A2:2 A3:3 A4:4				------	----------------	---	-----	------		Obie	ctive Question					26	14292026	With reference to nanomaterial characterization by UV-Visible spectroscopy, which of the following is <i>not</i> possible? 1. Surface Plasmon Resonance (SPR) studies 2. Band-gap determination 3. Monitoring drug delivery 4. Evaluation of crystallinity A1:1 A2:2 A3:3 A4:4	1.0	0.00		Obje	ctive Question						14292027	The Near-Infrared (NIR) region has an approximate wave number range of 1. 13000 to 4000 cm ⁻¹ 2. 100 to 400 cm ⁻¹ 3. 3000 to 9000 cm ⁻¹ 4. 4000 to 400 cm ⁻¹ A1:1 A2:2 A3:3 A4:4	1.0	0.00		28	14292028		1.0	0.00			1							Plasmonic metal nanoparticles are important in 1. Mass spectroscopy 2. SEIRA spectroscopy 3. FT-IR spectroscopy 4. ESR spectroscopy				------	----------------	---	-----	------				A1:1 A2:2 A3:3 A4:4											14292029	Disproportionation is a reaction in which 1. Same element undergoes oxidation and reduction 2. Redox reaction in which oxidizing agent is a metal and reducing agent is a non-metal 3. Redox reaction in which oxidizing agent is a non- metal and reducing agent is a metal 4. Different metals undergo simultaneous oxidation and reduction	1.0	0.00				A1:1 A2:2 A3:3 A4:4				Obje	ctive Question					30	14292030	The only nanoparticle whose plasmon resonance can be tuned to any wavelength in the visible spectrum is 1. Cu 2. Ag 3. Au 4. Pt A1:1 A2:2 A3:3 A4:4	1.0	0.00		Obje	ctive Question					31	14292031		1.0	0.00				Metal nanoparticles (MNPs) are not associated with				------	----------------	---	-----	------				Large surface to volume ratio compared to bulk						2. Quantum confinement						Long range ordering						Large surface energies																		A1:1												A2:2												A3:3												A4:4										Obje	ctive Question					32	14292032		1.0	0.00				Surface Plamon Resonance (SPR) phenomenon is related to size of metal nanoparticles (MNPs). The colour of small						and big-sized gold nanoparticles will expect to be						4. Plack and calculage respectively.						Black and colourless respectively Red and purple respectively						Purple and red respectively						Purple and blue respectively																		A1.1						A1:1						12.2						A2:2												A3:3												A4:4										Obje	ctive Question		1.0	0.00		33	14292033	Which of the following material is useful in the imaging of prostate cancer cells?	1.0	0.00										Gold nanoshells						Gold nanorods Gold nanobeacons						Silver nanorods						4. Silver rianorous																		A1:1												A2:2												A3:3												A4:4											ctive Question			10		34	14292034		1.0	0.00				The existence of metal nanoparticles (MNPs) in solution was first recognized by 1. Turkevich 2. Brust and Schiffrin 3. Feynmann 4. Faraday A1:1 A2:2 A3:3 A4:4				----	----------------	--	-----	------			ctive Question					35	14292035	Plasmon excitation can be exhibited by 1. Metal nanoclusters 2. Metal nanoparticles 3. Silica nanoparticles 4. Metal oxide nanoparticles A1:1 A2:2 A3:3 A4:4	1.0	0.00			14292036		1.0	0.00			etive Question	Select the spectroscopic methods for characterization of surface plasmons in alloy nanoparticles 1. SERS and UV-Visible spectroscopy 2. ESR and Raman spectroscopy 3. ESR and IR-spectroscopy 4. ESR and NMR spectroscopy A1:1 A2:2 A3:3 A4:4					14292037		1.0	0.00		١٤	17427203/		1.0	0.00				The band structure in metal nanoparticle become discrete energy levels when their size changed to 1. Compton wavelength				------------	----------------	--	-----	------				2. Fermi wavelength						3. de-Broglie wavelength						Surface plasmon wavelength																		A1:1												A2:2												A3:3												A4:4						A4.4										Obje 38	ctive Question		1.0	0.00		38	14292038	PAMAM can be used in the preparation of gold nanoclusters (Au NCs) as a	1.0	0.00										Reducing agent						2. Encapsulating agent						3. Oxidizing agent						Sequestering agent																		A1:1						A1.1												A2:2												A3:3												A4:4										Obje	ctive Question					39	14292039		1.0	0.00				Quantum dots can be considered as						Two-dimensional nanomaterials						Zero-dimensional nanomaterials						One-dimensional nanomaterials						Three-dimensional nanomaterials Three-dimensional nanomaterials						1. Throo-dinorisional nationals																		A1:1												A2:2												A3:3												A4:4						T. T											ctive Question		1.0	0.00		40	14292040		1.0	0.00												11				The band-gap energy in semiconductor quantum dots is				------	----------------	--	-----	------				Directly proportional to size						Inversely proportional to size						3. Independent on size						4. Independent on material																		A1:1						Al : I												A2:2												A3:3												A4:4											ctive Questior					41	14292041		1.0	0.00				The CdSe quantum dots are highly toxic when added to cultured cells. This is because of						4 The best consisted decide light should be						The heat generated during light absorption The liberation of cadmium ions into the culture medium						The liberation of cauliful for into the culture medium The liberation of selenide ions into the culture medium						The accumulation in the cytoplasm																								A1:1												A2:2												A3:3												A4:4										Obje	ctive Question					42	14292042		1.0	0.00				Which of the following is a not considered a carbon-based nanomaterial (CBN)?																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
	Carbon nanotubes Graphene						3. Nanodiamonds						4. Graphite																								A1:1												A2:2												A3:3												A4:4											ctive Questior					43	14292043		1.0	0.00						II				Pick out the factor which does not adversely affect electronic and optical properties of graphene				------------	----------------	---	-----	------				rick out the factor which adds not adversely affect electronic and optical properties of graphene						1. Defects						2. Grain boundaries						3. Wrinkles in the graphene sheet						4. Sheet structure																								A1:1												A2:2												A3:3						A3:3												A4:4										Obie	ctive Question					44	14292044		1.0	0.00				Carbon quantum dots (C-dots) are cluster of carbon atoms with diameter range						87 SVG - 855E						1. 1 to 100 nm						2. 2 to 8 nm						3. 10 to 100 nm						4. 100 to 200 nm																		A1:1						Al : I												A2:2												A3:3																		A4:4											ctive Question					45	14292045		1.0	0.00				Which of the following is considered as the smallest member of the fullerene family?						1. C ₁₅						2. C ₂₀						3. C ₄₀						4. C ₆₀						4. 060																		A1:1												A2:2						n2 . 2												A3:3												A4:4										C1 :						Obje 46	ctive Question		1.0	0.00		40	14292046		1.0	0.00												11				Which of the following method is <i>not</i> used to synthesize fullerenes				------	----------------	--	-----	------										Laser ablation method						2. Arc discharge method						3. Pyrolysis of hydrocarbons						4. Hydrothhermal synthesis																		A1:1												A2:2						A2:2												A3:3												A4:4										Obje	ctive Question					47	14292047		1.0	0.00				The pyrolysis of naphthalene at 1000° C in an argon atmosphere mainly produces												1. C ₆₀						2. C ₇₀						3. C ₇₂						4. C ₈₄																		A1:1												A2:2						14.2												A3:3												A4:4										Obje	ctive Question					48	14292048		1.0	0.00				In the case of zig-zag single walled carbon nanotube, the coefficients n and m in the chiral vector follows that						1. In the two integers (n and m), n = m						2. In the two integers (n and m), m = 0						3. In the two integers (n and m), m ≠ n						4. In the two integers (n and m), m = n = 0																								A1:1												A2:2												A3:3						140.0												A4:4											ctive Question					49	14292049		1.0	0.00																The Young's modulus of CNTs are in the range of				------------	----------------------------	---	-----	------										1. Nearly 100 GPa						2. 1000 to 1270 GPa 3. Nearly 10 GPa						4. 2500 to 2750 GPa						4. 2300 to 2730 Of a																		A1:1												A2:2												A3:3												A4:4										Obje	ctive Question					50	14292050		1.0	0.00				Compared to single -walled carbon nanotubes (SWCNTs), the multi-walled carbon nanotubes (MWCNTs) have												High purity Easiness to twist						High chance of defect during functionalization						Required catalyst for synthesis																		A1 1						A1:1						12.2						A2:2												A3:3												A4:4										Obje 51	ctive Question 14292051		1.0	0.00		31	14272031	Graphene is an allotrope of carbon consisting of a single layer of carbon atoms arranged inlattice	1.0	0.00				4 O.E.						Cubic Tetragonal						3. Hexagonal						4. Pentagonal																		A1:1						Al. I						A2:2						AZ : Z						A3:3						A3 . 3						A4:4						T. TA				01 :						52	ctive Question 14292052		1.0	0.00			.2,2032													Graphene membranes have the capacity to reject approximately of NaCl from seawater 1. 70 % 2. 50 % 3. 79 % 4. 97 %				----	----------------	--	-----	------				A3:3 A4:4											ctive Question					53	14292053	Which of the following designates graphene oxide (GO)? 1. Completely oxidized graphite 2. Oxygenated counterpart of multi walled CNT 3. Oxygenated counterpart of one-atom thick graphene 4. Oxygenated counterpart of fullerene	1.0	0.00				A1:1 A2:2						A3:3 A4:4											ctive Question					54	14292054	How does the size of Carbon Quantum Dots (CQDs) affect their optical properties, specifically photoluminescence? 1. Larger size enhances photoluminescence 2. Smaller size enhances photoluminescence 3. Size has no effect on photoluminescence 4. Photoluminescence is independent of size of CQD	1.0	0.00				A2:2						A3:3 A4:4											ctive Question			0.00		55	14292055		1.0	0.00				What is the hybridization of carbon in nanodiamonds (NDs)?				------	----------------	--	----------	------				1. sp ²						$2. \text{ sp}^3$						3. sp^2 and sp^3												4. sp																		A1:1												42.2						A2:2												A3:3												A4:4													<u> </u>				ctive Question		1.0	0.00		56	14292056	CQDs display absorption in which of the following range?	1.0	0.00				ogbs display absorption in which of the following range?						1. UV to NIR						2. Visible to NIR						3. UV to visible						4. Microwave to NIR																								A1:1												A2:2												A2 - 2						A3:3												A4:4										Obie	ctive Question					57	14292057		1.0	0.00				What is the primary characteristic that distinguishes nanocomposites from conventional composites?												1. Size of the particles						2. Matrix material						3. Synthesis method						Mechanical properties																		A1:1																		A2:2												A3:3												A4:4																	ctive Question		1	11 -		58	14292058		1.0	0.00																In nanofiber synthesis, what does electrospinning primarily rely on?				------	----------------	---	-----	------				Magnetic fields						Centrifugal force						3. Electric fields						Electrical and magnetic fields																								A1:1												A2:2												A3:3												A4:4											ctive Question					59	14292059	Which nanofiber synthesis technique relies on the spontaneous organization of molecules or nanoparticles into a fibrous	1.0	0.00				structure?												1. Electrospinning						2. Template Synthesis						3. Phase Separation						4. Self-Assembly																		A1:1												A2:2												A3:3												A4:4										Obje	ctive Question					60	14292060		1.0	0.00				Which is the most common imaging mode in STM?												1. Constant current mode						Constant height mode Contact mode						Non-contact mode						4. Non-contact mode																		A1:1												A2:2												A3:3												A4:4											ctive Question					61	14292061		1.0	0.00				What is the primary advantage of Polymer Nanoparticles (PNPs) as drug carriers?				------------	----------------------------	---	-----	------										1. Small size						Slow drug release Limited bioavailability						Controlled release and improved bioavailability						1. Solitioned totals and improved bloardinability									
						A1:1												A2:2												A3:3												A4:4										Obje 62	ctive Question		1.0	0.00		62	14292062	Chondroitin Sulphate is a	1.0	0.00										Natural polymer						Biosynthetic polymer Synthetic polymer						Semisynthetic monomer						4. Semisynthetic monomer																		A1:1												A2:2												A3:3												A4:4										Obje 63	ctive Question 14292063		1.0	0.00		03	14292003	Which of the following is <i>not</i> a method for MOF synthesis?	1.0	0.00										1. Solvothermal Method						Electrochemical Method Sol-gel Method						4. Sonochemical Method																								A1:1												A2:2												A3:3						44.4						A4:4				C1 :						Obje 64	ctive Question 14292064		1.0	0.00			2001													Which classification term is used for MOFs related to the general class of coordination polymers? 1. Isoreticular MOFs 2. Porous Coordination Polymers (PCPs) 3. Zeolitic Imidazolate Frameworks (ZIFs) 4. Materials Institute Lavoisier (MIL) MOFs A1:1 A2:2 A3:3				------	---------------------------	--	-----	------								Obje	ctive Question					65	14292065		1.0	0.00				Pick out the primary advantage of MOF-nanoparticles compared to bulk MOFs?						Lower surface area						2. Reduced tunability						Smaller dimensions and enhanced surface area						4. Higher stability																		A1:1						A2:2						A3:3						A4:4											tive Question 14292066		1.0	0.00		00	14272000	Which of the following is an example of an intermolecular bond?	1.0	0.00				1. lonic bond						2. Hydrogen bond						3. Covalent bond						4. Metallic bond												A1:1						A1.1						A2:2												A3:3						A4:4											ctive Question					67	14292067		1.0	0.00										Which type of bonding is twice as strong as dipole-dipole bonding and is relatively weak compared to covalent bonds? 1. Hydrogen bonding 2. Metallic bonding 3. Van der Waals forces 4. Ionic bonding A1:1				------	----------------	--	-----	------				A3:3 A4:4				Obje	ctive Question			-		68	14292068		1.0	0.00				2. 348 kJ/mol						3. 463 kJ/mol						4. 436 kJ/mol						A1:1												A2:2						A3:3 A4:4																	ctive Question			1		69	14292069	What is the spontaneous arrangement of molecules into organized structures driven by non-covalent interactions called? 1. Molecular recognition 2. Supramolecular assembly 3. Hydrophobic interaction 4. Covalent bonding	1.0	0.00				A1:1						A2:2						A3:3						A4:4				Obje	ctive Question					70	14292070		1.0	0.00										Which of the following is the role of molecular self-assembly in living organisms?				------	---------------------------	---	-----	------										Formation of inorganic structures						Construction of lipid membranes						Creation of metallic bonds						Development of covalent structures																		A1:1												A2:2						A2:2												A3:3												A4:4										Obje	ctive Question			-		71	14292071		1.0	0.00				Which supramolecular nanosystem serves as a scaffold for tissue engineering applications by mimicking the extracellular						matrix?						Metal-organic frameworks (MOFs)						Dendritic supramolecular assemblies						3. Supramolecular polymers						4. Supramolecular hydrogels																								A1:1												A2:2												A3:3												A4:4										01:	· · · · · ·						tive Question 14292072		1.0	0.00		/ 2	14272072	Which of the following relates emission from triplet excited states?	1.0	0.00										1. Fluorescence						2. Inter system crossing (ISC)						3. Phosphorescence						4. Transmittance																		A1:1												A2:2												A3:3						130.0												A4:4											ctive Question					73	14292073		1.0	0.00										Which of the following is <i>not</i> a basic mechanism for upconversion luminescence? 1. Excited state absorption 2. Cross relaxation 3. Photon avalanche 4. Excited state emission Al:1 A2:2 A3:3 A4:4				-------	----------------	--	-----	-------		Obje	ctive Question			-		74	14292074	Which lanthanide ions are mentioned as important for their biologically appropriate emission in the visible region? 1. Erbium and Holmium 2. Lutetium and Neodymium 3. Europium and Terbium 4. Samarium and Dysprosium Al : 1 A2 : 2 A3 : 3 A4 : 4	1.0	0.00			ctive Question			10.00		Obje.	14292075	What term describes the measure of remaining magnetization of a material when the external magnetic field is dropped to zero? 1. Remanence (M _t) 2. Coercivity (H _c) 3. Magnetization (M) 4. Saturation magnetization (M _s) A1:1 A2:2 A3:3 A4:4	1.0	0.00		76	14292076		1.0	0.00		II .	n		II.	II.				How does the size of nanoparticles affect their magnetic behaviour? 1. Larger size enhances superparamagnetism 2. Smaller size increases coercivity 3. Decreasing size below a certain value induces superparamagnetism 4. Size has no impact on magnetic behaviour A1:1				------	----------------	--	-----	------				A3:3						A4:4				-	ctive Question					77	14292077	What role does the magnetically active core play in magnetic nanoparticles? 1. It provides stability to the nanoparticles 2. It enables manipulation using magnetic fields 3. It prevents agglomeration of nanoparticles	1.0	0.00				4. It enhances the biocompatibility of magnetic nanoparticles A1:1						A2:2						A3:3						A4:4										Obje	ctive Question						14292078	The T2 contrast agents in MRI leads to	1.0	0.00				1. Brightening effect						Darkening effect They have no effect on image contrast						They have no effect on image contrast They improve imaging speed												A1:1						A2:2						A3:3						A4:4					ctive Question		1.0	0.00		79	14292079		1.0	0.00				In magnetic hyperthermia therapy, what causes the destruction of cancer cells?				------	---------------------------	---	-----	------				Absorption of visible light						Reversal of magnetization in magnetic nanoparticles						Release of oxygen radicals						Activation of immune response																		A1:1												A2:2												A3:3												A4:4											ctive Question					80	14292080	Which is the characteristic application of luminomagnetic nanoparticles which utilize both the functional properties in	1.0	0.00				them?												1. Gene therapy						2. Multimodal imaging						Hyperthermia therapy Drug delivery						4. Drug delivery																		A1:1												A2:2												A3:3												A4:4											tive Question 14292081		1.0	0.00		01	14292081	What role do exosomes play in intercellular communication?	1.0	0.00										Store genetic material Transport biomolecules between cells						Synthesize proteins						Enable cellular metabolism																		A1:1												A2:2												A3:3												A4:4										Obje	ctive Question					82	14292082		1.0	0.00										How do virus-like particles (VLPs) differ from natural viruses? 1. VLPs lack a protein coat 2. VLPs are incapable of infecting cells				------	----------------	---	-----	-------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
						VLPs lack genetic material needed to replicate						VLPs are significantly larger																								A1:1												A2:2																		A3:3												A4:4						АТ.Т										Obje	ctive Question					83	14292083		1.0	0.00				What is the primary function of lipoproteins?												Transport of lipids						2. Transport of nucleic acids						Catalysing metabolic reactions						4. Transport of proteins						P\$ 4960 - *0350 0 0 * 03000000																		A1:1																		A2:2												A3:3						AJ.J												A4:4										01:	· • · ·						ctive Question		1.0	10.00		84	14292084	What is the primary function of nanowires in sensors?	1.0	0.00				what is the primary function of nanowires in sensors?						1. Enhancing accuracy						Increasing mechanical strength												3. Detecting gases, chemicals, and biomolecules						Storing binary data																								A1:1												A2:2						AZ . Z												A3:3												A.1						A4:4										Obje	ctive Question					85	14292085		1.0	0.00								II.														Nanocomposite materials are used in printed circuit boards (PCBs) primarily to enhance 1. Light absorption 2. Mechanical strength, thermal conductivity, and electromagnetic shielding 3. Storage capacity 4. Heat dissipation				------------	----------------	---	-----	------										A2:2						A3:3						A4:4										Obje 86	ctive Question		1.0	0.00		80	14292080	Which nanoelectronic device utilizes nanoscale magnetic materials to control electron spin?	1.0	0.00				Nanoscale transistors						Quantum computing systems						3. Spintronics devices						Nanoelectromechanical Systems												A1:1												A2:2						A3:3						A4:4										Ohie	ctive Question					87	14292087		1.0	0.00				Which type of nanosensor utilizes changes in light interactions to detect specific substances?						Chemical nanosensors						2. Biological nanosensors						3. Physical nanosensors						Optical nanosensors																		A1:1						A2:2						A2.2						A3:3						A4:4										Obje	ctive Question					88	14292088		1.0	0.00																Which of the following statements best describes the concept of quantum size effects in nanosensors?				-----	-----------------	---	-----	--				Quantum size effects refer to the ability of nanosensors to detect quantum fluctuations in the environment.						Quantum size effects arise from the changes in the electronic and optical properties of nanomaterials at the nanoscale.						Quantum size effects are solely responsible for the high sensitivity of nanosensors.						4. Quantum size effects in nanosensors are not significant compared to traditional sensor technologies.																		A1:1												A2:2												A3:3												A4:4										Obj	ective Question			<u> </u>		89	14292089		1.0	0.00				Which type of nanosensor offers the potential for highly sensitive label-free detection of biomolecules?						Nanoparticle-based biosensors						2. Nanowire biosensors						Nanocantilever biosensors						4. Nanopore biosensors																		A1:1												A2:2												A3:3												A4:4										Obj	ective Question					90	14292090		1.0	0.00				What is the effect of reducing the domain size of a nanocatalyst?						Decreases the number of active sites						2. Increases the particle size						Maximizes the number of active sites						Reduces the reactivity																		A1:1												A2:2												A3:3												A4:4											ective Question					91	14292091		1.0	0.00								II	II I		II.	II.				What is the primary aim of using a catalyst in a chemical reaction? 1. To decrease the rate of reaction				------	----------------	---	-----	------				2. To increase the activation energy						3. To increase the rate of reaction by lowering the activation energy						4. To maintain the thermodynamic equilibrium of the reaction																		A1 1						A1:1												A2:2												A3:3																		A4:4										Obje	ctive Question					92	14292092	20 80703 2 9	1.0	0.00				Biocompatibility refers to						The ability of a material to be hostile to living tissue						The ability of a material to interact with biological systems						The inability of a material with living tissue						The companion of a material with living dissue The resistance of a material to biological degradation						4. The resistance of a material to biological degradation																		A1:1												A2 - 2						A2:2												A3:3												A4:4																	ctive Question		1.0	0.00		93	14292093	Which of the following nanoparticles is optically transparent and inert to pH?	1.0	0.00				Which of the following flanoparticles is optically transparent and mert to prive						1. Gold nanoparticles						2. Silica nanoparticles						3. Iron nanoparticles						4. Titanium nanoparticles																								A1:1												A2:2												A3:3						A3.3												A4:4										Obje	ctive Question					94	14292094		1.0	0.00																What distinguishes theranostic nanomaterials from other nanomaterials?				------	----------------	--	-----	-------										They can only be used for therapy						They can only be used for diagnosis						They can be used for both therapy and diagnosis						They have no therapeutic or diagnostic applications																		A1:1												A2:2																		A3:3												A4:4										Obje	ctive Question					95	14292095		1.0	0.00				What is the primary advantage of using multimodal imaging techniques?						They simplify imaging procedures.						They offer complementary benefits such as high spatial resolution and soft tissue contrast						They reduce the need for contrast agents.						They are less expensive compared to single-modal imaging						i. They are toos onperiors compared to single model imaging																		A1:1												A2:2												A3:3												A4:4						A4.4											ctive Question			10.00		96	14292096	Which type of nanoparticles can enhance the effects of radiotherapy by increasing the radiation dose delivered to cancer	1.0	0.00				cells?						COILD?						Iron oxide nanoparticles						Gadolinium-based nanoparticles						3. Gold nanoparticles						4. Carbon-based nanoparticles																		A1:1												A2:2						A2.2												A3:3												A4:4										Obje	ctive Question					97	14292097		1.0	0.00										Institute of Nano Science and Technology (INST) is located at				------	----------------	---	-----	------										1. Mohali						2. Bengaluru						3. Chennai						4. Kanpur																								A1:1												A2:2												A3:3						AJ.J												A4:4										Obje	ctive Question					98	14292098		1.0	0.00				The lotus effect refers to												1. self-wetting property						2. self-cleaning property						3. self-drying property						self-oxidising property																		A1:1						Al: I												A2:2												A3:3																		A4:4											ctive Question					99	14292099	\$10 M (\$100) M (\$1 M) (\$100) M (\$1 M) (\$100) M (\$100)	1.0	0.00				Core-shell bimetallic nanoparticles can be obtained by						Successive Reduction						2. Co-reduction												Co-precipitation Laser Ablation																																																																																								
4. Laser Adiation																		A1:1												40.0						A2:2												A3:3												A4:4						т. т											ctive Question					100	14292100		1.0	0.00															Bright dotted ring that appeared in the SAED pattern indicates that the material is 1. Amorphous 2. Single crystalline 3. Polycrystalline 4. A soft material			--	---	--			A1:1				A2:2				A3:3				A4:4																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					